Operator Structures and Methods in Quantum Error Correction, Quantum Privacy, and Entanglement Theory
量子纠错、量子隐私和纠缠理论中的算子结构和方法
基本信息
- 批准号:RGPIN-2018-04809
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We are on the doorstep of a “quantum revolution” in many areas of modern science, perhaps most significantly in the development of new types of technologies based on quantum information science. ******Quantum information is the umbrella term that has evolved to encompass such disciplines as quantum computing, quantum cryptography, quantum information theory, and quantum information processing. Canada has positioned itself as a world leader in these theoretical and experimental efforts, and the Canadian mathematical community in particular has identified quantum information as a key research area in its recent long range plan.*** ***The primary goal of the proposed research is to investigate central foundational problems in quantum information, with an approach rooted in mathematics. Specifically, the proposed research program of David Kribs goes directly to the heart of the mathematical foundations of the subject; intensifying and broadening his investigations in the fundamental areas of quantum error correction, quantum privacy, and quantum entanglement theory, with a methodological approach based on core operator theoretic mathematical structures and techniques. ******As part of the proposed research, Kribs will also continue his efforts in the training of highly qualified personnel in these emerging and maturing disciplines and the underlying mathematics, and at generating interactions between the different scientific communities that intersect with the heavily interdisciplinary areas of quantum information.
在现代科学的许多领域,我们正处于“量子革命”的门槛上,也许最重要的是基于量子信息科学的新型技术的发展。** 量子信息是一个总括术语,它已经发展到包括量子计算、量子密码学、量子信息理论和量子信息处理等学科。加拿大已经将自己定位为这些理论和实验努力的世界领导者,特别是加拿大数学界已经将量子信息确定为其最近长期计划的关键研究领域。 * 拟议研究的主要目标是采用植根于数学的方法研究量子信息中的核心基础问题。具体来说,大卫克瑞斯的拟议研究计划直接进入该主题的数学基础的核心;加强和扩大他在量子纠错,量子隐私和量子纠缠理论的基本领域的研究,基于核心算子理论的数学结构和技术的方法论方法。** 作为拟议研究的一部分,Krribs还将继续努力在这些新兴和成熟的学科和基础数学方面培养高素质的人才,并在与量子信息的跨学科领域交叉的不同科学界之间产生互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kribs, David其他文献
Uniqueness of quantum states compatible with given measurement results
与给定测量结果兼容的量子态的唯一性
- DOI:
10.1103/physreva.88.012109 - 发表时间:
2012-12 - 期刊:
- 影响因子:2.9
- 作者:
Johnston, Nathaniel;Kribs, David;Shultz, Frederic;Zeng, Bei - 通讯作者:
Zeng, Bei
Kribs, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kribs, David', 18)}}的其他基金
Operator Structures and Methods in Quantum Error Correction, Quantum Privacy, and Entanglement Theory
量子纠错、量子隐私和纠缠理论中的算子结构和方法
- 批准号:
RGPIN-2018-04809 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Error Correction, Quantum Privacy, and Entanglement Theory
量子纠错、量子隐私和纠缠理论中的算子结构和方法
- 批准号:
RGPIN-2018-04809 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Error Correction, Quantum Privacy, and Entanglement Theory
量子纠错、量子隐私和纠缠理论中的算子结构和方法
- 批准号:
RGPIN-2018-04809 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Error Correction, Quantum Privacy, and Entanglement Theory
量子纠错、量子隐私和纠缠理论中的算子结构和方法
- 批准号:
RGPIN-2018-04809 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Information
量子信息中的算子结构和方法
- 批准号:
261481-2013 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Information
量子信息中的算子结构和方法
- 批准号:
261481-2013 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Information
量子信息中的算子结构和方法
- 批准号:
261481-2013 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Information
量子信息中的算子结构和方法
- 批准号:
261481-2013 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Information
量子信息中的算子结构和方法
- 批准号:
261481-2013 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Mathematical synthesis of application and theory in quantum error correction
量子纠错应用与理论的数学综合
- 批准号:
261481-2008 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Operator Structures and Methods in Quantum Error Correction, Quantum Privacy, and Entanglement Theory
量子纠错、量子隐私和纠缠理论中的算子结构和方法
- 批准号:
RGPIN-2018-04809 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Error Correction, Quantum Privacy, and Entanglement Theory
量子纠错、量子隐私和纠缠理论中的算子结构和方法
- 批准号:
RGPIN-2018-04809 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Error Correction, Quantum Privacy, and Entanglement Theory
量子纠错、量子隐私和纠缠理论中的算子结构和方法
- 批准号:
RGPIN-2018-04809 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Error Correction, Quantum Privacy, and Entanglement Theory
量子纠错、量子隐私和纠缠理论中的算子结构和方法
- 批准号:
RGPIN-2018-04809 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Information
量子信息中的算子结构和方法
- 批准号:
261481-2013 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Information
量子信息中的算子结构和方法
- 批准号:
261481-2013 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Stochastic transfer operator methods for modelling the vibroacoustic properties of newly emerging transport structures
用于模拟新兴运输结构的振动声学特性的随机传递算子方法
- 批准号:
EP/M027201/1 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Research Grant
Operator Structures and Methods in Quantum Information
量子信息中的算子结构和方法
- 批准号:
261481-2013 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Information
量子信息中的算子结构和方法
- 批准号:
261481-2013 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Operator Structures and Methods in Quantum Information
量子信息中的算子结构和方法
- 批准号:
261481-2013 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual