Parallelization strategies for morph graph algorithms

变形图算法的并行化策略

基本信息

  • 批准号:
    RGPIN-2018-05082
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

I conduct research on parallelization strategies of applications involving dynamic irregular task graphs on heterogeneous parallel computing platforms. These applications involve complex data-structures such as trees and graphs with irregular memory access patterns and dynamic data sharing. In this proposed research, my specific focus is on morph graph algorithms, a subset of irregular algorithms, that change the underlying graph structures in unpredictable ways. Examples of morph algorithms with graph as data-structure are: Boruvka's Minimum Spanning Forest (MSF) algorithm, multi-level graph partitioning algorithms, Survey Propagation, Delaunay Mesh Refinement (DMR), and many more listed in the proposal. These algorithms have widespread practical uses. Unlike (fixed) irregular algorithms, research on parallelization of morph algorithms on heterogeneous platforms (e.g., CPU-GPU systems, clusters, computational clouds) is limited. In a GPU-based implementation of such morph algorithms, complexity arises due to extreme synchronization overheads with locks, idling due to issues like branch divergence and load imbalances resulting from dynamic changes in graph topology, and unreliability due to possibility of deadlocks. Few of the existing approaches handle synchronization in lock-free ways using atomic operations like "compare and swap"; however certain algebraic properties (e.g., monotonicity) have to be satisfied by the application's characteristics so that lock-free approach can be applied, thus limiting its applicability. There are approaches that use no synchronization at all (e.g., atomic-free approach), but it could make the algorithm very complex and hence error prone to program, in addition to being much less scalable. Recently I have been exploring a Software Transactional Memory (STM) based approach to handle the synchronization issues of a class of Morph algorithms on GPUs with promising results. The approach is deadlock- and livelock-free, much more reliable, and less prone to programmer errors as compared to contemporary approaches. I have also been investigating a combination of STM and lock-free operations in a class of Morph algorithms (e.g., MSF) with promising results. Currently these approaches are tailored to a specific application. In this research, I propose to investigate other types of morph graph algorithms that have widespread uses (e.g., my ongoing research is on multi-level graph partitioning), investigate approaches to handle branch divergence and dynamic load balancing, investigate applications that may not satisfy the required algebraic properties (e.g., in certain networking applications), and identify/classify the common characteristics for such algorithms to facilitate developing a well-defined methodology and development framework for morph algorithms on heterogeneous parallel computing platforms.
本文研究了异构并行计算平台上动态不规则任务图应用的并行化策略。这些应用程序涉及复杂的数据结构,如树和图形与不规则的内存访问模式和动态数据共享。在这项研究中,我的具体重点是变形图算法,不规则算法的子集,以不可预测的方式改变底层图结构。图作为数据结构的变形算法的例子有:Boruvka的最小生成森林(MSF)算法,多级图分区算法,调查传播,Delaunay网格细化(DMR),以及提案中列出的更多算法。这些算法具有广泛的实际用途。与(固定的)不规则算法不同,变形算法在异构平台上的并行化研究(例如,CPU-GPU系统、集群、计算云)是有限的。在这种变形算法的基于GPU的实现中,复杂性由于以下原因而增加:与锁的极端同步开销、由于诸如分支发散和由图拓扑中的动态变化导致的负载不平衡之类的问题而导致的空闲、以及由于死锁的可能性而导致的不可靠性。现有的方法中很少有使用原子操作(如“比较和交换”)以无锁方式处理同步;然而,某些代数属性(例如,单调性)必须由应用程序的特性来满足,使得可以应用无锁方法,从而限制了其适用性。存在根本不使用同步的方法(例如,无原子的方法),但是它可能使算法非常复杂,因此除了可扩展性差得多之外,容易出现程序错误。最近,我一直在探索一种基于软件传输内存(STM)的方法来处理一类变形算法在GPU上的同步问题,并取得了可喜的成果。这种方法是无死锁和活锁的,更可靠,与当代方法相比,更不容易出现程序员错误。我也一直在研究一类Morph算法中STM和无锁操作的组合(例如,无国界医生组织(MSF)取得了可喜的成果。目前,这些方法是针对特定应用而定制的。在这项研究中,我建议研究其他类型的变形图算法,具有广泛的用途(例如,我正在进行的研究是关于多级图划分),研究处理分支发散和动态负载平衡的方法,研究可能不满足所需代数属性的应用(例如,在某些网络应用中),并识别/分类这些算法的共同特征,以便于开发用于异构并行计算平台上的变形算法的定义明确的方法和开发框架。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Goswami, Dhrubajyoti其他文献

Goswami, Dhrubajyoti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Goswami, Dhrubajyoti', 18)}}的其他基金

Parallelization strategies for morph graph algorithms
变形图算法的并行化策略
  • 批准号:
    RGPIN-2018-05082
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Parallelization strategies for morph graph algorithms
变形图算法的并行化策略
  • 批准号:
    RGPIN-2018-05082
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Parallelization strategies for morph graph algorithms
变形图算法的并行化策略
  • 批准号:
    RGPIN-2018-05082
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Parallelization strategies for morph graph algorithms
变形图算法的并行化策略
  • 批准号:
    RGPIN-2018-05082
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Advancement of parallel systems skeletons
并行系统骨架的进步
  • 批准号:
    250301-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Advancement of parallel systems skeletons
并行系统骨架的进步
  • 批准号:
    250301-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Advancement of parallel systems skeletons
并行系统骨架的进步
  • 批准号:
    250301-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Advancement of parallel systems skeletons
并行系统骨架的进步
  • 批准号:
    250301-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Advancement of parallel systems skeletons
并行系统骨架的进步
  • 批准号:
    250301-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Towards the enrichment of parallel systems skeletons
丰富并行系统骨架
  • 批准号:
    250301-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
5'-tRF-GlyGCC通过SRSF1调控RNA可变剪切促三阴性乳腺癌作用机制及干预策略
  • 批准号:
    82372743
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
放疗通过激活GSDMD诱发细胞焦亡促进肿瘤再增殖的机制研究及干预策略探讨
  • 批准号:
    82373299
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
面向人工智能生成内容的风险识别与治理策略研究
  • 批准号:
    72304290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Innovative Double Patterning Strategies for Integrated Circuit Manufacture
集成电路制造的创新双图案化策略
  • 批准号:
    LP230100313
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Linkage Projects
Gender Affirmation in Childhood: Protective Factors and Strategies
童年时期的性别肯定:保护因素和策略
  • 批准号:
    DP240101695
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Projects
STrAtegies for RelaTives (START) ARC Accelerator
相关策略 (START) ARC 加速器
  • 批准号:
    ES/Y011139/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
Collaborative Research: Conference: Strategies to Mitigate Implicit Bias and Promote an Ethos of Care in the Research Enterprise: A Convening
协作研究:会议:减轻隐性偏见并促进研究企业关怀精神的策略:召开会议
  • 批准号:
    2324401
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Investigation of crosstalk between Fanconi Anemia pathway and ATM for novel therapeutic strategies of chemoresistant ALT-positive high-risk neuroblastoma
范可尼贫血通路与 ATM 之间的串扰研究,用于化疗耐药 ALT 阳性高危神经母细胞瘤的新治疗策略
  • 批准号:
    24K10442
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Are family firms in Japan resilient to economic shock? Digging further by family types, management strategies, and earnings quality.
日本的家族企业能否抵御经济冲击?
  • 批准号:
    24K00297
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
日本の女性の政治参画推進策の現状分析―Non-quota strategiesに着目して
日本促进妇女参政措施现状分析——以非配额策略为中心
  • 批准号:
    24K15567
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Gut immunity: Unraveling Mechanisms and Strategies for Neonatal Intestinal Disorder
肠道免疫:揭示新生儿肠道疾病的机制和策略
  • 批准号:
    502588
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了