Analysis of flowback data using artificial intelligence for regulating and optimizing hydraulic fracturing operations

使用人工智能分析返排数据以调节和优化水力压裂作业

基本信息

  • 批准号:
    543998-2019
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Canada's rapidly declining conventional oil and gas resources has been a stimulus for the development of itsunconventional resources. This development has become possible using horizontal drilling and multi-stage hydraulic fracturing. There has been an increase in hydraulic fracturing operations during the last decade. Hence, it is important to optimize these operations and minimize their potential environmental impacts. Recently, the use of artificial intelligence (AI) to address the challenges associated with flowback data analysis for fracturing optimization is gaining attention. One key advantage of the AI technique over existing methods is that it can handle larger quantities of noisy data without necessarily requiring a prior assumption of the physics of fluid flow. Therefore, they can handle incomplete input data, which is often a challenge in flowback data analysis. Therefore, this project's objective is to optimize fracturing operations in Canadian tight reservoirs. It will use advanced AI techniques which will be developed by the University of Alberta team to analyze the large completion, fracturing and flowback data sets that will be provided by geoLOGIC Systems Ltd. The resulting AI software will benefit the industry and government regulators by 1) maximizing efficiency and profitability of fracturing operations using optimal fracturing and completion designs, 2) minimizing fresh water consumption and reducing environmental impacts of fracturing operations, 3) preventing uncontrolled creation of inefficient fractures and possible groundwater contamination, 4) assessing public health and environmental risks related to groundwater contamination by fracturing fluid, and 5) improving the knowledge database for government agencies to update fracturing-related regulations in Canada.
加拿大常规油气资源的迅速减少刺激了其非常规资源的开发。利用水平钻井和多级水力压裂,这种开发已成为可能。在过去的十年中,水力压裂作业有所增加。因此,优化这些操作并最大限度地减少其潜在的环境影响至关重要。最近,使用人工智能(AI)来解决与压裂优化返排数据分析相关的挑战越来越受到关注。人工智能技术相对于现有方法的一个关键优势是,它可以处理大量的噪声数据,而不需要预先假设流体流动的物理特性。因此,它们可以处理不完整的输入数据,这在返排数据分析中通常是一个挑战。因此,本项目的目标是优化加拿大致密储层的压裂作业。它将使用由阿尔伯塔大学团队开发的先进人工智能技术来分析geoLOGIC Systems Ltd.提供的大型完井、压裂和返排数据集。由此产生的人工智能软件将通过以下方式使行业和政府监管机构受益:1)使用最佳压裂和完井设计最大限度地提高压裂作业的效率和盈利能力,2)使淡水消耗最小化并减少压裂操作的环境影响,3)防止无效裂缝的不受控制的产生和可能的地下水污染,4)评估与压裂液污染地下水相关的公共健康和环境风险,5)完善知识数据库,供政府机构更新加拿大压裂相关法规。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dehghanpour, Hassan其他文献

Modeling of natural-gas diffusion in oil-saturated tight porous media
  • DOI:
    10.1016/j.fuel.2021.120999
  • 发表时间:
    2021-05-18
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Doranehgard, Mohammad Hossein;Tran, Son;Dehghanpour, Hassan
  • 通讯作者:
    Dehghanpour, Hassan
Measuring diffusion coefficients of gaseous propane in heavy oil at elevated temperatures
  • DOI:
    10.1007/s10973-019-08768-7
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Athar, Khan;Doranehgard, Mohammad Hossein;Dehghanpour, Hassan
  • 通讯作者:
    Dehghanpour, Hassan
Laboratory and field analysis of flowback water from gas shales
Fracture Characterization Using Flowback Salt-Concentration Transient
  • DOI:
    10.2118/168598-pa
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Zolfaghari, Ashkan;Dehghanpour, Hassan;Bearinger, Doug
  • 通讯作者:
    Bearinger, Doug
Enhancing Imbibition Oil Recovery from Tight Rocks by Mixing Nonionic Surfactants
  • DOI:
    10.1021/acs.energyfuels.0c02160
  • 发表时间:
    2020-10-15
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Habibi, Ali;Esparza, Yussef;Dehghanpour, Hassan
  • 通讯作者:
    Dehghanpour, Hassan

Dehghanpour, Hassan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dehghanpour, Hassan', 18)}}的其他基金

Investigating Multiphase Flow in Shales by Measuring Relative Permeabilities for Sustainable Hydrocarbon Recovery
通过测量相对渗透率研究页岩中的多相流以实现可持续碳氢化合物采收
  • 批准号:
    RGPIN-2020-05376
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Visualizing and quantifying solvent-transport and bitumen-recovery mechanisms under core-plug conditions
岩心塞条件下溶剂迁移和沥青回收机制的可视化和量化
  • 批准号:
    566325-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Investigating Multiphase Flow in Shales by Measuring Relative Permeabilities for Sustainable Hydrocarbon Recovery
通过测量相对渗透率研究页岩中的多相流以实现可持续碳氢化合物采收
  • 批准号:
    RGPIN-2020-05376
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluating the Wettability and EOR Potential of Duvernay and Eagle Ford Samples
评估 Duvernay 和 Eagle Ford 样品的润湿性和 EOR 潜力
  • 批准号:
    543893-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Evaluating the Wettability and EOR Potential of Duvernay and Eagle Ford Samples
评估 Duvernay 和 Eagle Ford 样品的润湿性和 EOR 潜力
  • 批准号:
    543893-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Investigating Multiphase Flow in Shales by Measuring Relative Permeabilities for Sustainable Hydrocarbon Recovery
通过测量相对渗透率研究页岩中的多相流以实现可持续碳氢化合物采收
  • 批准号:
    RGPIN-2020-05376
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluating the Wettability and EOR Potential of Duvernay and Eagle Ford Samples
评估 Duvernay 和 Eagle Ford 样品的润湿性和 EOR 潜力
  • 批准号:
    543893-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Investigating Three-Phase Flow of Steam-Water-Oil in Porous Media for Maximizing SAGD Potential: A New Measurement Technique
研究多孔介质中蒸汽-水-油的三相流以最大化 SAGD 潜力:一种新的测量技术
  • 批准号:
    RGPIN-2014-06105
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating Three-Phase Flow of Steam-Water-Oil in Porous Media for Maximizing SAGD Potential: A New Measurement Technique
研究多孔介质中蒸汽-水-油的三相流以最大化 SAGD 潜力:一种新的测量技术
  • 批准号:
    RGPIN-2014-06105
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Visualization of the interactions between CO2 and Lloydminster Heavy Oil under Non-equilibrium Conditions
非平衡条件下二氧化碳与劳埃德明斯特重油相互作用的可视化
  • 批准号:
    521820-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program

相似海外基金

Flowback Data Analytics using Artificial Intelligence for Optimizing Fracturing Operations in Unconventional Reservoirs
使用人工智能进行返排数据分析来优化非常规油藏的压裂作业
  • 批准号:
    535232-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Flowback Data Analytics using Artificial Intelligence for Optimizing Fracturing Operations in Unconventional Reservoirs
使用人工智能进行返排数据分析来优化非常规油藏的压裂作业
  • 批准号:
    535232-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Flowback Data Analytics using Artificial Intelligence for Optimizing Fracturing Operations in Unconventional Reservoirs
使用人工智能进行返排数据分析来优化非常规油藏的压裂作业
  • 批准号:
    535232-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of a comprehensive workflow for combined analysis of flowback and post flowback production data from multifractured horizontal wells completed in gas shales
开发综合工作流程,对气页岩中完成的多层压裂水平井的返排和返排后生产数据进行组合分析
  • 批准号:
    468100-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Understanding the coupled transport of water and ions in gas shales for interpreting hydraulic fracture flowback data
了解含气页岩中水和离子的耦合传输以解释水力压裂返排数据
  • 批准号:
    468101-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Understanding the coupled transport of water and ions in gas shales for interpreting hydraulic fracture flowback data
了解含气页岩中水和离子的耦合传输以解释水力压裂返排数据
  • 批准号:
    468101-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a comprehensive workflow for combined analysis of flowback and post flowback production data from multifractured horizontal wells completed in gas shales
开发综合工作流程,对气页岩中完成的多层压裂水平井的返排和返排后生产数据进行组合分析
  • 批准号:
    468100-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a comprehensive workflow for combined analysis of flowback and post flowback production data from multifractured horizontal wells completed in gas shales
开发综合工作流程,对气页岩中完成的多层压裂水平井的返排和返排后生产数据进行组合分析
  • 批准号:
    468100-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Understanding the coupled transport of water and ions in gas shales for interpreting hydraulic fracture flowback data
了解含气页岩中水和离子的耦合传输以解释水力压裂返排数据
  • 批准号:
    468101-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
New Methods for Quantitatively Analysing Hydraulic Fracture Flowback Data from Unconventional Wells and Online Production Data from Tight Gas Condensate Wells
非常规井水力压裂返排数据和致密凝析气井在线生产数据定量分析新方法
  • 批准号:
    459859-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了