Methods and analytical tools for patient flow optimization
患者流程优化的方法和分析工具
基本信息
- 批准号:RGPIN-2014-06328
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The patient flow problem in clinical settings involves determining for each patient the best sequence of activities as well as their appointment(s). Patients arrive in the system one at a time, typically because they are referred to the treatment centre or clinic, and wait for an appointment. This appointment usually defines the start time of their visit (or the start day of their treatment). Each patient has a profile that is not known in advance. The profile is defined to be a set of activities and a duration time for each activity. One or more resources may perform each activity, and some activities have precedence constraints. Each day one or more activities may occur. The arrival times, care needs, and service times of the patients are usually unknown.**Two different settings are considered in this proposal: multiple appointments each involving only one activity but different resources, and single appointments requiring different activities to be performed by different resources. Activities may occur in the same day or over a longer period of time. For example, all appointments for radiotherapy treatment on the linear accelerators (the machines used for radiotherapy) are booked in advance at the same time. Earlier appointments are set up with the physician, for the CT scan, etc. In other outpatient settings, such as preoperative clinics, a single appointment is made and all activities such as the blood test, the physician consultation, and the electrocardiogram must be scheduled on the same day. **An effective health system must efficiently coordinate the necessary resources and activities. While this is the long-term goal of my research program, this research proposal specifically addresses the patient flow problem and its integration with the patient booking problem and the resource planning and scheduling problems. **Different tools and methods will be used to tackle these problems. The main challenges are related to the uncertainty in the healthcare context and the complexity of the problems. We will develop a methodological framework based on online optimization algorithms and efficient metaheuristics. Seven projects will be assigned to MSc and PhD students. Two will develop online algorithms for patient booking (assigned to two PhD students, each considering a different setting), and two others will explore large-neighbourhood metaheuristics for resource planning (MSc #1) and scheduling (MSc #2). Projects five and six will focus on integration methods to link the methods and solutions of the first four projects; these coordination projects are the keystone of my research program. Finally project 7 will ensure that a technological transfer will occur.*The expected impact is to reduce patient delays and bottlenecks created by a lack of coordination of the limited resources.
临床环境中的病人流动问题涉及为每个病人确定最佳的活动顺序以及他们的预约(S)。患者每次一个人进入系统,通常是因为他们被转介到治疗中心或诊所,并等待预约。这种预约通常定义他们探视的开始时间(或他们治疗的开始日期)。每个患者都有一个事先不知道的个人资料。配置文件被定义为一组活动和每个活动的持续时间。一个或多个资源可以执行每个活动,并且某些活动具有优先约束。每天可能会发生一项或多项活动。病人的到达时间、护理需求和服务时间通常是未知的。**本方案考虑了两种不同的设置:多个预约,每个预约只涉及一个活动但不同的资源,以及单个预约需要不同的活动由不同的资源执行。活动可能发生在同一天,也可能发生在更长的时间内。例如,所有在直线加速器(用于放射治疗的机器)上进行放射治疗的预约都是同时提前预订的。更早地与医生预约,进行CT扫描等。在其他门诊设置中,如术前诊所,只需预约一次,所有活动,如验血、医生会诊和心电图必须安排在同一天。**有效的卫生系统必须有效地协调必要的资源和活动。虽然这是我的研究计划的长期目标,但本研究方案专门针对病人流动问题及其与病人预约问题以及资源规划和调度问题的集成。**将使用不同的工具和方法来解决这些问题。主要挑战与医疗保健背景的不确定性和问题的复杂性有关。我们将开发一个基于在线优化算法和高效元启发式算法的方法框架。七个项目将分配给硕士和博士生。其中两人将开发病人预约的在线算法(分配给两名博士生,每个人考虑不同的环境),另外两人将探索资源计划(MSC#1)和调度(MSC#2)的大型邻域元启发式方法。项目五和项目六将重点放在整合方法上,将前四个项目的方法和解决方案联系起来;这些协调项目是我研究计划的重点。最后,项目7将确保进行技术转让。*预期的影响是减少因缺乏协调有限的资源而造成的病人延误和瓶颈。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lahrichi, Nadia其他文献
On integrating patient appointment grids and technologist schedules in a radiology center
- DOI:
10.1007/s10729-022-09618-z - 发表时间:
2022-10-21 - 期刊:
- 影响因子:3.6
- 作者:
Bentayeb, Dina;Lahrichi, Nadia;Rousseau, Louis-Martin - 通讯作者:
Rousseau, Louis-Martin
Chemotherapy appointment scheduling and daily outpatient-nurse assignment
- DOI:
10.1007/s10729-018-9462-6 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:3.6
- 作者:
Benzaid, Menel;Lahrichi, Nadia;Rousseau, Louis-Martin - 通讯作者:
Rousseau, Louis-Martin
Patient scheduling based on a service-time prediction model: a data-driven study for a radiotherapy center
- DOI:
10.1007/s10729-018-9459-1 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:3.6
- 作者:
Bentayeb, Dina;Lahrichi, Nadia;Rousseau, Louis-Martin - 通讯作者:
Rousseau, Louis-Martin
Automated screening of potential organ donors using a temporal machine learning model.
- DOI:
10.1038/s41598-023-35270-w - 发表时间:
2023-05-25 - 期刊:
- 影响因子:4.6
- 作者:
Sauthier, Nicolas;Bouchakri, Rima;Carrier, Francois Martin;Sauthier, Michael;Mullie, Louis-Antoine;Cardinal, Heloise;Fortin, Marie-Chantal;Lahrichi, Nadia;Chasse, Michael - 通讯作者:
Chasse, Michael
High efficiency endocrine operation protocol: From design to implementation
- DOI:
10.1016/j.surg.2016.06.037 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:3.8
- 作者:
Mascarella, Marco A.;Lahrichi, Nadia;Rosenberg, Lawrence - 通讯作者:
Rosenberg, Lawrence
Lahrichi, Nadia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lahrichi, Nadia', 18)}}的其他基金
Methods and analytical tools to optimize patient flow
优化患者流程的方法和分析工具
- 批准号:
RGPIN-2020-07199 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Methods and analytical tools to optimize patient flow
优化患者流程的方法和分析工具
- 批准号:
RGPIN-2020-07199 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Methods and analytical tools to optimize patient flow
优化患者流程的方法和分析工具
- 批准号:
RGPIN-2020-07199 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Planification intégrée des horaires de technologues et de rendez-vous de patients en clinique ambulatoire********
临床门诊技术与患者会面的规划整合********
- 批准号:
535820-2018 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Methods and analytical tools for patient flow optimization
患者流程优化的方法和分析工具
- 批准号:
RGPIN-2014-06328 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Methods and analytical tools for patient flow optimization
患者流程优化的方法和分析工具
- 批准号:
RGPIN-2014-06328 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Workforce sizing and scheduling in Telemedecine
远程医疗中的劳动力规模和调度
- 批准号:
521813-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Methods and analytical tools for patient flow optimization
患者流程优化的方法和分析工具
- 批准号:
RGPIN-2014-06328 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Modèles prédictifs et outils d'aide à la décision pour la gestion des rendez-vous de patients
预测和辅助工具以及患者会合管理决策的模块
- 批准号:
505310-2016 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Methods and analytical tools for patient flow optimization
患者流程优化的方法和分析工具
- 批准号:
RGPIN-2014-06328 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
非集中式网络供应链的协调优化与应用研究
- 批准号:70871105
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
- 批准号:
10797410 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Machine learning methods for interpreting spatial multi-omics data
用于解释空间多组学数据的机器学习方法
- 批准号:
10585386 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Statistical Methods for Improving Real-Time Public Health Surveillance and Integrated Outbreak Detection
改进实时公共卫生监测和综合疫情检测的统计方法
- 批准号:
10682401 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Statistical methods for analyzing messy microbiome data: detection of hidden artifacts and robust modeling approaches
分析杂乱微生物组数据的统计方法:隐藏伪影的检测和稳健的建模方法
- 批准号:
10708908 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Methods and analytical tools to optimize patient flow
优化患者流程的方法和分析工具
- 批准号:
RGPIN-2020-07199 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for analyzing messy microbiome data: detection of hidden artifacts and robust modeling approaches
分析杂乱微生物组数据的统计方法:隐藏伪影的检测和稳健的建模方法
- 批准号:
10503637 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Statistical Methods for Improving Real-Time Public Health Surveillance and Integrated Outbreak Detection
改进实时公共卫生监测和综合疫情检测的统计方法
- 批准号:
10535624 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Statistical methods for genomic analysis of heterogeneous tumors
异质肿瘤基因组分析的统计方法
- 批准号:
10662552 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Statistical Methods for Network-based Integrative Analysis of Microbiome Data
基于网络的微生物组数据综合分析的统计方法
- 批准号:
10708748 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Statistical methods for cancer mutational signatures
癌症突变特征的统计方法
- 批准号:
10662461 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别: