Multi-Agent Reinforcement Learning for Autonoumous Vehicles
自动驾驶汽车的多智能体强化学习
基本信息
- 批准号:RGPIN-2017-06379
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The long term objective of this research is to create a system of machines and devices that can effectively learn how to work together in a changing environment. We are proposing such systems for the multi-robot application. The idea is to have many unmanned vehicles and sensors working together and learning how to adapt to their environment. Applications include the security of industrial facilities and border regions and for teams of autonomous vehicles that can secure territory without endangering human life. In these cases combinations of vision systems and various types of unmanned vehicles will learn how to work together to secure the region and address any dangers. The interaction of artificial intelligence with actions of multiple vehicles and devices will be a huge leap forward in the development of artificial intelligence. This work is specifically important for those in the security and defence industries, the robotics industry and for those working on the development of unmanned aerial vehicles (drones) and self-driving cars. The industrial impact of this work will be far reaching.*** This research will focus on the adaptation and learning aspects of multi-robot systems. We will investigate the pursuer evader game and the guarding a territory game. The unique aspect of this research is to develop learning algorithms such that the robots have the ability to learn how to play these games. We propose to develop learning algorithms so that teams of robots can learn how to play together and how to compete. In one case, a number of robots will be defined as guards commanded to guard against invasion by another set of robots. The goal is for the guarding set of robots to intercept the invading robots as far as possible from the “target region” and for the invading robots to get as close as possible to the “target region”. In the second case the robots will learn how to play the evader pursuer game. The objective of the learning algorithms is to find the “optimal” strategy for all the players. The robots will learn how to take into consideration their own capabilities and the capabilities of the other robots as well.*** We have made significant progress in developing learning algorithms for the case of one evader and one pursuer and the case of one guard and one invader, each having constant speed. Experimental work shows how our algorithms will adapt to real time situations and to take advantage of another robot's poor performance. We then progressed to the case of multiple pursuers and multiple guards chasing and defending against a higher speed invader and evader.*** We have developed an experimental facility that uses up to three mobile robots working together. Furthermore, we are collaborating with researchers at the Royal Military College in Kingston and we have access to their experimental mobile robots as well. **
这项研究的长期目标是创建一个机器和设备系统,可以有效地学习如何在不断变化的环境中协同工作。我们提出这样的系统的多机器人应用。这个想法是让许多无人驾驶车辆和传感器一起工作,并学习如何适应它们的环境。应用包括工业设施和边境地区的安全,以及可以在不危及人类生命的情况下保护领土的自动驾驶车辆团队。在这些情况下,视觉系统和各种类型的无人驾驶车辆的组合将学习如何共同努力,以确保该地区的安全并解决任何危险。人工智能与多个车辆和设备的动作交互将是人工智能发展的巨大飞跃。 这项工作对于安全和国防行业、机器人行业以及从事无人驾驶飞行器(无人机)和自动驾驶汽车开发的人员特别重要。这项工作的工业影响将是深远的。** 这项研究将集中在多机器人系统的适应和学习方面。 我们将研究追赶者逃避者博弈和守卫领土博弈。这项研究的独特之处在于开发学习算法,使机器人有能力学习如何玩这些游戏。我们建议开发学习算法,以便机器人团队可以学习如何一起玩,如何竞争。在一种情况下,一些机器人将被定义为守卫,命令他们防止另一组机器人的入侵。目标是使机器人的守卫集合尽可能远离“目标区域”拦截入侵机器人,并且使入侵机器人尽可能接近“目标区域”。在第二种情况下,机器人将学习如何玩逃避者追逐者游戏。学习算法的目标是找到所有参与者的“最优”策略。机器人将学习如何考虑自己的能力和其他机器人的能力。 我们已经取得了重大进展,在开发学习算法的情况下,一个逃避者和一个追求者和一个警卫和一个入侵者的情况下,每个都有恒定的速度。实验工作表明,我们的算法将如何适应真实的时间的情况下,并利用另一个机器人的性能差。然后,我们继续讨论多个追赶者和多个警卫追赶和防御更高速度的入侵者和逃避者的情况。 我们开发了一种实验设备,使用多达三个移动的机器人一起工作。此外,我们正在与金斯顿的皇家军事学院的研究人员合作,我们也可以使用他们的实验性移动的机器人。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Schwartz, Howard其他文献
P08 A Phase 1, randomized, double-blind study to evaluate the safety, tolerability, and immunogenicity of a 21-valent pneumococcal conjugate vaccine (PCV) (V116) in adults
- DOI:
10.1093/jacamr/dlac133.012 - 发表时间:
2023-01-19 - 期刊:
- 影响因子:3.4
- 作者:
Platt, Heather;Fernsler, Doreen;Gallagher, Nancy;Sapre, Aditi;Polis, Adam;Hall, Lori;Tamms, Gretchen;Schwartz, Howard;Skinner, Julie;Joyce, Joseph;Murphy, Rocio;Musey, Luwy - 通讯作者:
Musey, Luwy
Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib.
- DOI:
10.1002/art.38974 - 发表时间:
2015-03 - 期刊:
- 影响因子:13.3
- 作者:
Charles-Schoeman, Christina;Fleischmann, Roy;Davignon, Jean;Schwartz, Howard;Turner, Scott M.;Beysen, Carine;Milad, Mark;Hellerstein, Marc K.;Luo, Zhen;Kaplan, Irina V.;Riese, Richard;Zuckerman, Andrea;McInnes, Iain B. - 通讯作者:
McInnes, Iain B.
IRAK4 degrader in hidradenitis suppurativa and atopic dermatitis: a phase 1 trial.
- DOI:
10.1038/s41591-023-02635-7 - 发表时间:
2023-12 - 期刊:
- 影响因子:82.9
- 作者:
Ackerman, Lindsay;Acloque, Gerard;Bacchelli, Sandro;Schwartz, Howard;Feinstein, Brian J.;La Stella, Phillip;Alavi, Afsaneh;Gollerkeri, Ashwin;Davis, Jeffrey;Campbell, Veronica;Mcdonald, Alice;Agarwal, Sagar;Karnik, Rahul;Shi, Kelvin;Mishkin, Aimee;Culbertson, Jennifer;Klaus, Christine;Enerson, Bradley;Massa, Virginia;Kuhn, Eric;Sharma, Kirti;Keaney, Erin;Barnes, Randy;Chen, Dapeng;Zheng, Xiaozhang;Rong, Haojing;Sabesan, Vijay;Ho, Chris;Mainolfi, Nello;Slavin, Anthony;Gollob, Jared A. - 通讯作者:
Gollob, Jared A.
Safety and immunogenicity of a phase 1/2 randomized clinical trial of a quadrivalent, mRNA-based seasonal influenza vaccine (mRNA-1010) in healthy adults: interim analysis.
- DOI:
10.1038/s41467-023-39376-7 - 发表时间:
2023-06-19 - 期刊:
- 影响因子:16.6
- 作者:
Lee, Ivan T.;Nachbagauer, Raffael;Ensz, David;Schwartz, Howard;Carmona, Lizbeth;Schaefers, Kristi;Avanesov, Andrei;Stadlbauer, Daniel;Henry, Carole;Chen, Ren;Huang, Wenmei;Schrempp, Daniela Ramirez;Ananworanich, Jintanat;Paris, Robert - 通讯作者:
Paris, Robert
Schwartz, Howard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Schwartz, Howard', 18)}}的其他基金
Multi-Agent Reinforcement Learning for Autonoumous Vehicles
自动驾驶汽车的多智能体强化学习
- 批准号:
RGPIN-2017-06379 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Multi-Agent Reinforcement Learning for Autonoumous Vehicles
自动驾驶汽车的多智能体强化学习
- 批准号:
RGPIN-2017-06379 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Multi-Agent Reinforcement Learning for Autonoumous Vehicles
自动驾驶汽车的多智能体强化学习
- 批准号:
RGPIN-2017-06379 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Multi-Agent Reinforcement Learning for Autonoumous Vehicles
自动驾驶汽车的多智能体强化学习
- 批准号:
RGPIN-2017-06379 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Multi-Agent Reinforcement Learning for Autonoumous Vehicles
自动驾驶汽车的多智能体强化学习
- 批准号:
RGPIN-2017-06379 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Adaptive and intelligent control of multiple cooperative robots
多协作机器人的自适应智能控制
- 批准号:
37216-2011 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Multi-Objective and Multi-Agent Reinforcement Learning for Autonomous Marine Vessels
自主船舶的多目标和多智能体强化学习
- 批准号:
501788-2016 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Adaptive and intelligent control of multiple cooperative robots
多协作机器人的自适应智能控制
- 批准号:
37216-2011 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Adaptive and intelligent control of multiple cooperative robots
多协作机器人的自适应智能控制
- 批准号:
37216-2011 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Adaptive and intelligent control of multiple cooperative robots
多协作机器人的自适应智能控制
- 批准号:
37216-2011 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于Agent的自动化渗透测试技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI Agent赋能中小企业智能决策系统研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
计算机控制Agent在可交互式企业征信报告生成的应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
大模型Agent驱动的AI制药关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
混合多元区域情境下多Agent的自主协同决策方法研究
- 批准号:62306099
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于操控员情境意识状态可解释Agent的智能交互触发机制研究
- 批准号:62376220
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多Agent仿真模型的新能源汽车市场渗透研究
- 批准号:2023JJ60196
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向联排联调的城市复合洪涝灾害风险Agent建模与智能决策
- 批准号:42371092
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
实施科学驱动Agent仿真构建脑卒中患者心理与行为干预规程——基于阶梯式楔形随机对照试验
- 批准号:82260281
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于Agent 技术的职业高校校企协同创新主体行为建模研究
- 批准号:2021JJ60029
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
- 批准号:
24K14913 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Self-adaptive and Cooperative Multi-agent Reinforcement Learning-based Network Traffic Control
基于强化学习的自适应协作多智能体网络流量控制
- 批准号:
23K19982 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Partially Observable Multi-agent Inverse Reinforcement Learning
部分可观察多智能体逆强化学习
- 批准号:
2894217 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
CAREER: Reinforcement Learning-Based Control of Heterogeneous Multi-Agent Systems in Structured Environments: Algorithms and Complexity
职业:结构化环境中异构多智能体系统的基于强化学习的控制:算法和复杂性
- 批准号:
2237830 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Decentralized Network-wide Signal Control by Multi-Agent Reinforcement Learning
通过多智能体强化学习进行分散式全网络信号控制
- 批准号:
23H01522 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312093 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant