Adsorption processes in highly microporous nanostructures for advanced energy and environmental technologies

用于先进能源和环境技术的高度微孔纳米结构的吸附过程

基本信息

  • 批准号:
    RGPIN-2016-06769
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Highly microporous adsorbents are playing a key role in the development of greener and more efficient energy and environmental technologies. They can be used as active agents in pressure swing adsorption (PSA) systems to purify biogas to improve compatibility with natural gas infrastructure and energy technologies, to extract hydrogen from hydrocarbon streams to improve the energy efficiency of gas reforming technologies for the oil industry or to extract hydrogen from waste for zero direct emission electric power generation. PSA can also be used to remove greenhouse gases and contaminants from effluent gases for sequestration or disposal. Microporous adsorbents can also be used for the reversible low-pressure and safe storage of gaseous fuels such as methane and hydrogen at high energy densities.***The design of adsorption-based applications requires the ability to accurately predict the complex fluid mechanics phenomena associated with the kinetics of gases moving through porous powders made of highly microporous pellets, while undergoing adsorption processes that depend non-linearly on temperature and that generate significant thermal effects. An integrated multi-scale approach, from the microscopic to the macroscopic, can in principle determine optimal microscopic and macroscopic properties of adsorbents as a function of target operating conditions (pressure, temperature, flow conditions), specific to the application, and of the gases to be processed.***The objectives of this proposals are (1) to develop a multiscale integrated approach that will bridge microscopic calculations of the adsorption process using statistical physics to anticipate the adsorption isotherms of new nanostructures over wide ranges of thermodynamic conditions from known nanostructures and interactions, the development of adsorption isotherm models (equations of state of adsorption) characterized by the smallest number of physically meaningful adjustable parameters that can be correlated to microscopic properties, and computer fluid mechanics (CFD) simulations of systems (gas storage and purification/separation) based on the isotherm models to determine application-specific optimal operating conditions, thermal management and geometries; (2) to determine optimal adsorbent properties ranges based on CFD system simulations by optimizing model isotherms to guide the development of new porous nanostructures (reverse engineering) and (3) to further the understanding of physisorption in the supercritical state (T>Tc) under extreme thermodynamic conditions (relevant to adsorption storage of hydrogen), notably the saturation limit of the adsorbed density in the supercritical state.**
高微孔吸附剂在开发更绿色、更高效的能源和环境技术方面发挥着关键作用。它们可用作变压吸附(PSA)系统中的活化剂,用于净化沼气以改善与天然气基础设施和能源技术的兼容性,从碳氢化合物流中提取氢气以提高石油工业气体重整技术的能效,或从废物中提取氢气用于零直接排放发电。PSA还可用于去除温室气体和流出气中的污染物,以进行封存或处置。微孔吸附剂还可用于在高能密度下对甲烷和氢气等气体燃料进行可逆的低压和安全存储。*基于吸附的应用程序的设计要求能够准确预测气体通过由高度微孔的颗粒制成的多孔粉时的动力学相关的复杂流体力学现象,同时经历与温度非线性相关的吸附过程并产生显著的热效应。从微观到宏观的综合多尺度方法原则上可以确定作为目标操作条件(压力、温度、流动条件)、特定于应用和待处理气体的函数的最佳微观和宏观吸附剂的性质。*该建议的目标是(1)开发多尺度综合方法,该方法将使用统计物理来连接吸附过程的微观计算,以根据已知的纳米结构和相互作用来预测新纳米结构在大范围热力学条件下的吸附等温线,发展吸附等温线模型(吸附状态方程),其特征是可与微观性质相关的最少数量的物理意义可调参数,以及基于等温线模型的系统(气体储存和净化/分离)的计算机流体力学(CFD)模拟,以确定特定应用的最佳操作条件、热管理和几何形状;(2)基于CFD系统模拟,通过优化模型等温线来确定最佳的吸附性能范围,以指导新的多孔纳米结构的开发(逆向工程);以及(3)加深对极端热力学条件(与氢的吸附储存相关)下超临界状态下的物理吸附(T>TC)的理解,特别是超临界状态下吸附密度的饱和极限。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bénard, Pierre其他文献

Bénard, Pierre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bénard, Pierre', 18)}}的其他基金

Adsorption processes in highly microporous nanostructures for advanced energy and environmental technologies
用于先进能源和环境技术的高度微孔纳米结构的吸附过程
  • 批准号:
    RGPIN-2016-06769
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Adsorption processes in highly microporous nanostructures for advanced energy and environmental technologies
用于先进能源和环境技术的高度微孔纳米结构的吸附过程
  • 批准号:
    RGPIN-2016-06769
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Adsorption processes in highly microporous nanostructures for advanced energy and environmental technologies
用于先进能源和环境技术的高度微孔纳米结构的吸附过程
  • 批准号:
    RGPIN-2016-06769
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Adsorption processes in highly microporous nanostructures for advanced energy and environmental technologies
用于先进能源和环境技术的高度微孔纳米结构的吸附过程
  • 批准号:
    RGPIN-2016-06769
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Adsorption processes in highly microporous nanostructures for advanced energy and environmental technologies
用于先进能源和环境技术的高度微孔纳米结构的吸附过程
  • 批准号:
    RGPIN-2016-06769
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Improving the efficiency of gas seperation and purification in pressure swing adsorption processes
提高变压吸附过程中气体分离和纯化的效率
  • 批准号:
    476596-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Collaborative Research and Development Grants
Comparative study of the dispersion of carbon monoxide contaminants in hydrogen gas mixtures
一氧化碳污染物在氢气混合物中分散的比较研究
  • 批准号:
    412006-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Stockage de l'hydrogène dans les nanostructures de carbone
碳纳米结构中的氢气库存
  • 批准号:
    238577-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Stockage de l'hydrogène dans les nanostructures de carbone
碳纳米结构中的氢气库存
  • 批准号:
    238577-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Stockage de l'hydrogène dans les nanostructures de carbone
碳纳米结构中的氢气库存
  • 批准号:
    238577-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Submesoscale Processes Associated with Oceanic Eddies
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    160 万元
  • 项目类别:

相似海外基金

Novel interlayered membrane for highly efficient separation processes
用于高效分离过程的新型夹层膜
  • 批准号:
    DE230100114
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Early Career Researcher Award
Zooplankton in highly heterogenous estuarine ecosystems: ecological and evolutionary processes and interconnectivity
高度异质性河口生态系统中的浮游动物:生态和进化过程以及互连性
  • 批准号:
    RGPIN-2019-05724
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Genetic and Genomic Analysis of Mutation Clusters Induced by Ubiquitous Endogenous Mutagenic Processes in Highly Sensitized Yeast Model Systems
高敏酵母模型系统中普遍存在的内源诱变过程诱导的突变簇的分子遗传学和基因组分析
  • 批准号:
    RGPIN-2017-05973
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated investigations on fracturing processes of highly stressed mine pillars
高应力矿柱破裂过程综合研究
  • 批准号:
    RGPIN-2018-04038
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
New frontiers in forest carbon processes: novel methane dynamics, pyrogenic carbon, and restoration of highly impacted sites
森林碳过程的新领域:新型甲烷动力学、热解碳和受严重影响的地点的恢复
  • 批准号:
    RGPIN-2022-04627
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing the JmjC Domain-Encoding demethylase HRJD in highly regenerative arthropods for evolutionary insights into regenerative processes
表征高度再生节肢动物中的 JmjC 结构域编码去甲基化酶 HRJD,以从进化角度了解再生过程
  • 批准号:
    21H02536
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Adsorption processes in highly microporous nanostructures for advanced energy and environmental technologies
用于先进能源和环境技术的高度微孔纳米结构的吸附过程
  • 批准号:
    RGPIN-2016-06769
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Genetic and Genomic Analysis of Mutation Clusters Induced by Ubiquitous Endogenous Mutagenic Processes in Highly Sensitized Yeast Model Systems
高敏酵母模型系统中普遍存在的内源诱变过程诱导的突变簇的分子遗传学和基因组分析
  • 批准号:
    RGPIN-2017-05973
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated investigations on fracturing processes of highly stressed mine pillars
高应力矿柱破裂过程综合研究
  • 批准号:
    RGPIN-2018-04038
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Zooplankton in highly heterogenous estuarine ecosystems: ecological and evolutionary processes and interconnectivity
高度异质性河口生态系统中的浮游动物:生态和进化过程以及互连性
  • 批准号:
    RGPIN-2019-05724
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了