Autonomous decision making in scientific exploration

科学探索中的自主决策

基本信息

  • 批准号:
    RGPIN-2019-06620
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The observational sciences have a problem. We know too much. ******Recent advances in electronics, and especially in camera and spectral sensor design have enabled the collection of unprecedented quantities of information. Unfortunately, the ability to collect and store sensor information have far outstripped the ability to analyze it and draw meaningful scientific inferences from it. In most terrestrial contexts, the problem is merely irritating. Scientists who wish to make observations of remote parts of the world must either physically travel to those remote locations (which is costly and dangerous) or painstakingly pore over large quantities of data obtained by remote sensors, most of which is not interesting from a scientific perspective, because it either contains no observations of the phenomenon of interest or merely recapitulates prior observations. In the context of interplanetary exploration, there is an additional cost imposed, which is called the "data budget". Even as planetary rover missions become more and more capable, with enhanced power plants and significantly upgraded sensor suites, the low bandwidth communications imposed by interplanetary distances mean that science and engineering teams are forced into a sort of daily triage negotiation to determine "whose turn is it to use the antenna"? It becomes even more important, in the context of a limited data budget, to reduce the wasted time spent transmitting data that, since it contains no new information, has very little value.******In short, here is a classic engineering problem. We have two precious, limited resources: the cognitive capability and attention span of trained scientists, and interplanetary robot bandwidth. The long term goal of our proposed research program is is to develop a suite of tools, taking advantage of modern techniques in computer vision and machine learning, that can automate certain scientific tasks to maximize the scientific return from investigation. There is no attempt in this research to "replace" human scientists. The field of machine learning is very far from the ability to formulate, reason about, test and discuss the importance of hypotheses. However, we believe there is a need in the scientific community for advanced tools that enhance an investigator's ability to search a large dataset, especially large visual and spectral datasets, to identify features of interest. We envision these tools acting as "interest filters", sifting through terabytes of data and notifying a human when some desired phenomenon is observed.******The proposed research program is interdisciplinary. The primary impacts will be felt in the observational sciences (planetary science, geology, astronomy, etc) where the work will be applied, by accelerating the process of information collection and analysis, and most of the specific projects to be addressed are motivated by problems identified in collaboration with scientific colleagues.
观察科学有一个问题。 我们知道的太多了。 ** 电子技术的最新进展,特别是相机和光谱传感器设计的最新进展,使得能够收集前所未有的信息量。不幸的是,收集和存储传感器信息的能力远远超过了分析信息并从中得出有意义的科学推论的能力,在大多数地球环境中,这个问题只是令人恼火。希望对世界偏远地区进行观测的科学家必须亲自前往这些偏远地区(这既昂贵又危险),或者煞费苦心地仔细研究遥感器获得的大量数据,其中大多数从科学角度来看并不有趣,因为这些数据要么不包含对感兴趣现象的观测结果,要么只是概括以前的观测结果。在行星际探索的背景下,需要额外的费用,这被称为“数据预算”。尽管行星漫游车任务的能力越来越强,动力装置得到增强,传感器套件得到显着升级,但行星际距离造成的低带宽通信意味着科学和工程团队被迫进行某种日常分类谈判,以确定“轮到谁了”使用天线”?在数据预算有限的情况下,减少浪费在传输数据上的时间变得更加重要,因为数据不包含新信息,价值很小。简而言之,这是一个经典的工程问题。我们有两种宝贵而有限的资源:训练有素的科学家的认知能力和注意力,以及行星际机器人的带宽。我们提出的研究计划的长期目标是开发一套工具,利用计算机视觉和机器学习的现代技术,可以自动执行某些科学任务,以最大限度地提高调查的科学回报。这项研究并没有试图“取代”人类科学家。机器学习领域还远远没有能力制定,推理,测试和讨论假设的重要性。然而,我们认为科学界需要先进的工具,以提高研究人员搜索大型数据集的能力,特别是大型视觉和光谱数据集,以识别感兴趣的特征。我们设想这些工具充当“兴趣过滤器”,筛选TB级的数据,并在观察到某些期望的现象时通知人类。拟议的研究计划是跨学科的。通过加速信息收集和分析过程,将在应用这项工作的观测科学(行星科学、地质学、天文学等)中感受到主要影响,而且要处理的大多数具体项目都是出于与科学同事合作查明的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mcisaac, Kenneth其他文献

Guaranteed Performance of Nonlinear Attitude Filters on the Special Orthogonal Group SO(3)
  • DOI:
    10.1109/access.2018.2889612
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Hashim, Hashim A.;Brown, Lyndon J.;Mcisaac, Kenneth
  • 通讯作者:
    Mcisaac, Kenneth

Mcisaac, Kenneth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
补偿性还是非补偿性规则:探析风险决策的行为与神经机制
  • 批准号:
    31170976
  • 批准年份:
    2011
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于神经营销学方法的品牌延伸认知与决策研究
  • 批准号:
    70772048
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Interactive Decision-Making Processes for Autonomous Driving Vehicle Systems.
自动驾驶车辆系统的交互式决策过程。
  • 批准号:
    2878901
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Self-driving laboratories for autonomous exploration of protein sequence space
用于自主探索蛋白质序列空间的自动驾驶实验室
  • 批准号:
    10717598
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Time-Certified Decision Making in Connected Autonomous Systems: Fixed-Time Equilibrium Seeking Control
互联自治系统中的时间认证决策:固定时间平衡寻求控制
  • 批准号:
    2228791
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
CAREER: Toward Autonomous Decision Making and Coordination in Intelligent Unmanned Aerial Vehicles' Operation in Dynamic Uncertain Remote Areas
职业:在动态不确定的偏远地区实现智能无人机操作的自主决策和协调
  • 批准号:
    2232048
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Enhancing Autonomy and Decision-Making Capabilities of an Obstacle Avoidance System for Autonomous Underwater Vehicles Operating Under Ice
增强冰下自主水下航行器避障系统的自主性和决策能力
  • 批准号:
    2757066
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Informatics and Machine Learning Modules for Research Planning, Scheduling, Simulation, and Optimization in the ASPIRE Autonomous Laboratory
用于 ASPIRE 自主实验室研究规划、调度、模拟和优化的信息学和机器学习模块
  • 批准号:
    10448106
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Informatics and Machine Learning Modules for Research Planning, Scheduling, Simulation, and Optimization in the ASPIRE Autonomous Laboratory
用于 ASPIRE 自主实验室研究规划、调度、模拟和优化的信息学和机器学习模块
  • 批准号:
    10642813
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Autonomous decision making in scientific exploration
科学探索中的自主决策
  • 批准号:
    RGPIN-2019-06620
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
AUTONOMOUS SYSTEMS: CONTROL, NAVIGATION, DECISION-MAKING, AND APPLICATIONS
自主系统:控制、导航、决策和应用
  • 批准号:
    563112-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    University Undergraduate Student Research Awards
Autonomous decision making in scientific exploration
科学探索中的自主决策
  • 批准号:
    RGPIN-2019-06620
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了