Physical Metallurgy for Superior Toughness of Pipeline Welds - Intercritical phase transformations in microalloyed high-strength steels
物理冶金学使管道焊缝具有优异的韧性 - 微合金高强度钢的临界相变
基本信息
- 批准号:RGPIN-2019-04240
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
***The long-term objective of this program is to develop the welding metallurgy for next generation steel linepipe for safe transportation of fossil-fuel and renewable energy. The short-term research objectives are to develop a theory for non-equilibrium transformations in X70 pipeline steel thermally cycled between lower and upper critical temperatures, and to optimize the low-temperature toughness by controlling the multipass weld microstructure. The educational objective of this program is to train highly qualified personnel in physical metallurgy of ferrous alloys, advanced mechanical testing methods, and analytical and numerical modeling of heterogeneous material performance.******Possessing exceptional strength and ductility, advanced steels alloyed with small amounts of elements, 0.01 to 0.10 wt% of Nb, V, Cr, and Mo each, find widespread use in critical structures from automotive to gas and petroleum pipelines. As an indispensable fabrication process, welding usually damages the optimized microstructure and properties of the original pipeline steels. How to properly weld these pipeline steels for superior performance has been the “holy grail” not only technologically, but also economically. The applicant proposes the following research tasks to quantitatively investigate:******1. Conduct welding tests on X70 pipeline steel, and characterize the thermal cycles typical for the intercritical heat-affected zone for gas-metal arc welding and submerged arc welding. Measure the impact toughness of the weld bondline and the heat-affected zone for the temperature range of -20 to -60C. ******2. Numerical simulations will be conducted to understand the temperature fields as influenced by the weld geometry and heat input. Reproduce the thermal cycles on the test alloys using the Gleeble and a quench dilatometer. ******3. Develop a microstructural evolution theory for optimizing the impact toughness by quantifying the peak temperatures on austenite formation and carbonitride dissolution (on-heating), and ferritic-type transformations (on-cooling). This theory will be applied to multipass deposits of 3D printed tool steel parts.******The economic impact of the proposed program promises to be very large. The technical findings will directly enhance the performance and safety of welded steel structures in petrochemical and power generating industries. There will be direct impact on Canadian metals and steels, manufacturing, petrochemical, and energy sectors. The scientific findings will contribute to materials engineering and physical metallurgy by providing new knowledge on microstructure-processing-properties relationship for an important class of engineering alloys. For training of highly qualified personnel, this research program serves as an ideal platform to educate graduate and undergraduate students in physical metallurgy.*****
* 该计划的长期目标是开发下一代钢制管道的焊接冶金技术,以实现化石燃料和可再生能源的安全运输。短期研究目标是建立X70管线钢在上下临界温度之间热循环的非平衡相变理论,并通过控制多道焊缝组织来优化低温韧性。该计划的教育目标是培养高素质的人才在铁合金的物理冶金,先进的机械测试方法,以及非均质材料性能的分析和数值建模。具有优异的强度和延展性,与少量元素(0.01至0.10重量%的Nb、V、Cr和Mo)合金化的先进钢广泛用于从汽车到天然气和石油管道的关键结构。焊接作为一种不可缺少的制造工艺,往往会破坏原始管线钢的优化组织和性能。如何正确焊接这些管线钢以获得上级性能,不仅在技术上,而且在经济上一直是“圣杯”。申请人提出以下研究任务进行定量研究:**1.对X70管线钢进行焊接试验,并对气体保护金属极电弧焊和埋弧焊的临界区热影响区的典型热循环进行表征。在-20 ℃至-60 ℃的温度范围内,测量焊缝和热影响区的冲击韧性。2.将进行数值模拟,以了解焊接几何形状和热输入对温度场的影响。使用Gleeble和淬火温度计再现试验合金的热循环。3.通过量化奥氏体形成和碳氮化物溶解(加热时)以及铁素体型转变(冷却时)的峰值温度,开发用于优化冲击韧性的显微组织演变理论。该理论将应用于3D打印工具钢零件的多道次沉积。拟议中的计划的经济影响有望非常大。这些技术成果将直接提高石油化工和发电行业焊接钢结构的性能和安全性。这将对加拿大的金属和钢铁、制造业、石化和能源部门产生直接影响。这一研究成果将为材料工程和物理冶金学的发展提供新的理论依据,为这类重要的工程合金的组织-工艺-性能关系提供新的认识。为了培养高素质的人才,该研究计划作为一个理想的平台,教育研究生和本科生在物理冶金。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li, Leijun其他文献
Transition from Type IV to Type I cracking in heat-treated grade 91 steel weldments
- DOI:
10.1016/j.msea.2017.12.088 - 发表时间:
2018-01-31 - 期刊:
- 影响因子:6.4
- 作者:
Wang, Yiyu;Li, Leijun;Kannan, Rangasayee - 通讯作者:
Kannan, Rangasayee
Microstructure characterization of laser welded Ti-6Al-4V fusion zones
激光焊接 Ti-6Al-4V 熔合区的显微组织表征
- DOI:
10.1016/j.matchar.2013.11.005 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:4.7
- 作者:
Xu, Pei-quan;Li, Leijun;Zhang, Chunbo (Sam) - 通讯作者:
Zhang, Chunbo (Sam)
Identification and Characterization of Intercritical Heat-Affected Zone in As-Welded Grade 91 Weldment
- DOI:
10.1007/s11661-016-3736-8 - 发表时间:
2016-12-01 - 期刊:
- 影响因子:2.8
- 作者:
Wang, Yiyu;Kannan, Rangasayee;Li, Leijun - 通讯作者:
Li, Leijun
A Coupled Thermal-Mechanical Analysis of Ultrasonic Bonding Mechanism
- DOI:
10.1007/s11663-008-9224-9 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:3
- 作者:
Zhang, Chunbo (Sam);Li, Leijun - 通讯作者:
Li, Leijun
Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping
- DOI:
10.1007/s10853-006-0948-0 - 发表时间:
2006-12-01 - 期刊:
- 影响因子:4.5
- 作者:
Li, Leijun - 通讯作者:
Li, Leijun
Li, Leijun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li, Leijun', 18)}}的其他基金
Phase transformations in the heat-affected zone of microalloyed steels
微合金钢热影响区的相变
- 批准号:
RGPIN-2020-04226 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Phase transformations in the heat-affected zone of microalloyed steels
微合金钢热影响区的相变
- 批准号:
RGPIN-2020-04226 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Phase transformations in the heat-affected zone of microalloyed steels
微合金钢热影响区的相变
- 批准号:
RGPIN-2020-04226 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Improving low-temperature weld seam toughness of electric resistance welded X70 line pipe
提高X70管线管电焊缝低温韧性
- 批准号:
507455-2016 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
Improving low-temperature weld seam toughness of electric resistance welded X70 line pipe
提高X70管线管电焊缝低温韧性
- 批准号:
507455-2016 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
Microstructural Development and Performance of Welds in Energy-Related Alloys
能源相关合金焊缝的微观结构发展和性能
- 批准号:
RGPIN-2014-03767 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Physical metallurgy for toughness of 1% Cr abrasion resistant steel for grinding ball stock
物理%20冶金%20for%20韧性%20of%201%%20Cr%20耐磨%20耐磨%20钢%20for%20研磨%20球%20库存
- 批准号:
477559-2014 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
Microstructural Development and Performance of Welds in Energy-Related Alloys
能源相关合金焊缝的微观结构发展和性能
- 批准号:
RGPIN-2014-03767 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Improving low-temperature weld seam toughness of electric resistance welded X70 line pipe
提高X70管线管电焊缝低温韧性
- 批准号:
507455-2016 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
Accelerated development of welding electrodes for abrasion-corrosion resistant overlay
加速开发耐磨腐蚀堆焊焊条
- 批准号:
503423-2016 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
Doctoral Dissertation Research: Long Term Environmental Effects of Metallurgy
博士论文研究:冶金的长期环境影响
- 批准号:
2420185 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
Travel Support for Students to Participate at the Additive Manufacturing with Powder Metallurgy Conference (AMPM2024); Pittsburgh, Pennsylvania; 16-19 June 2024
为学生参加粉末冶金增材制造会议(AMPM2024)提供差旅支持;
- 批准号:
2329412 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Developing production methods for metallurgy using additive manufacturing.
使用增材制造开发冶金生产方法。
- 批准号:
2891627 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Conference: 2023 Physical Metallurgy Gordon Research Conference and Seminar
会议:2023物理冶金戈登研究会议暨研讨会
- 批准号:
2326798 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Development of core/shell nano-composite magnetic particles by low oxygen powder metallurgy
低氧粉末冶金核/壳纳米复合磁性粒子的研制
- 批准号:
22KF0432 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of Al-CNT with high strength and electrical conductivity by using low oxygen powder metallurgy process
采用低氧粉末冶金工艺开发高强高导电Al-CNT
- 批准号:
22KJ1590 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: The Role of Long-distance Metallurgy Trade in Establishing Social Complexity
合作研究:长途冶金贸易在建立社会复杂性中的作用
- 批准号:
2317293 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Student Support: 2023 Powder Metallurgy & Particulate Materials Conference and Additive Manufacturing with Powder Metallurgy Conference; Las Vegas, Nevada; 18-21 June 2023
学生支持:2023粉末冶金
- 批准号:
2235587 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Collaborative Research: The Role of Long-distance Metallurgy Trade in Establishing Social Complexity
合作研究:长途冶金贸易在建立社会复杂性中的作用
- 批准号:
2317294 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant