Development and Application of beta-detected NMR to Quantum Materials and Beyond

β 检测核磁共振在量子材料及其他领域的开发和应用

基本信息

  • 批准号:
    RGPIN-2019-04257
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The high energy particles emitted in radioactive decay are very easy to detect, a property that enables *radiotracer* techniques that follow a radiolabeled species through chemical, physical or biological processes, forming the basis for powerful medical imaging techniques like Positron Emission Tomography (PET scans). Certain types of radioactivity can, however, report much more than just the radiolabel's location: they sense the electromagnetic characteristics of its local atomic environment. The most important example is radioactive beta decay, used in beta-detected nuclear magnetic resonance (NMR) that is the basis of this proposal.******NMR radioisotopes must have very short half-lives on the order of seconds or less, so they are made immediately before use. The ISAC facility at TRIUMF, Canada's particle accelerator centre, located at UBC in Vancouver, provides short-lived radioisotopes as ion beams. Mainly we use the isotope 8Li (halflife 0.848 seconds). Only a few other labs can make such beams, but more are being constructed. Our efforts lead the world in the development of NMR. With its new ARIEL project, a new source of 8Li will be available in 2021, dramatically increasing the amount of time available for these experiments.******A key strength of ion-implanted NMR is the ability to adjust the depth of the probe in a material. While there are many powerful surface-sensitive methods to study the topmost atomic layer, there are very few that reveal properties as a function of depth below a surface. Our main motive is to study surface and interface effects that give rise to poorly understood depth-dependent phenomena in solids on depth scales of a few nanometers (1 billionth of a meter) to a few hundred nm, an important range for modern electronics. Material interfaces, like metal/semiconductor, metal/polymer or electrode/electrolyte are crucial to many devices. As devices are miniaturized towards *nanotechnology*, every atom is near an interface. However, interface effects are not well understood. This proposal aims to study interface problems using the depth-resolved power of NMR. We will study new materials that will be the basis for new technologies, e.g. solid state electrolytes for Li+ batteries, correlated electronic conductors and topological materials with unique electromagnetic properties that may be used to sidestep limitations of conventional materials. We will study nanostructured glassy polymers to understand the effect of structure on molecular dynamics, and we will extend the application of NMR to new areas such as biochemistry.******Canada will benefit by leading the world in advanced materials research with outcomes that result in a better fundamental understanding of material interfaces, enabling optimization of current technologies and engineering radically new ones.**
放射性衰变中发射的高能粒子非常容易检测,这一特性使放射性示踪剂技术能够通过化学,物理或生物过程跟踪放射性标记的物质,形成了强大的医学成像技术的基础,如正电子发射断层扫描(PET扫描)。然而,某些类型的放射性不仅可以报告放射性标记的位置:它们还可以感知其局部原子环境的电磁特性。最重要的例子是放射性β衰变,用于β检测的核磁共振(NMR),这是该提案的基础。核磁共振放射性同位素必须具有非常短的半衰期,大约为几秒或更短,因此它们在使用前立即制备。位于温哥华不列颠哥伦比亚大学的加拿大粒子加速器中心TRIUMF的ISAC设施以离子束的形式提供短寿命放射性同位素。我们主要使用同位素8Li(半衰期0.848秒)。只有少数其他实验室可以制造这样的梁,但更多的正在建设中。我们的努力引领世界核磁共振的发展。通过其新的ARIEL项目,一个新的8Li源将在2021年可用,大大增加了这些实验的可用时间。离子注入NMR的一个关键优势是能够调整探针在材料中的深度。虽然有许多强大的表面敏感的方法来研究最顶层的原子层,但很少有揭示作为表面以下深度的函数的属性。我们的主要动机是研究表面和界面效应,这些效应导致固体在几纳米(十亿分之一米)到几百纳米(现代电子学的重要范围)的深度尺度上的深度依赖现象。材料界面,如金属/半导体、金属/聚合物或电极/电解质,对许多器件至关重要。随着设备向纳米技术方向微型化,每个原子都靠近一个界面。 然而,界面效应并没有得到很好的理解。该建议旨在利用核磁共振的深度分辨能力来研究界面问题。我们将研究新材料,这些新材料将成为新技术的基础,例如Li+电池的固态电解质,相关电子导体和具有独特电磁特性的拓扑材料,这些材料可用于避开传统材料的限制。我们将研究纳米结构的玻璃状聚合物,以了解结构对分子动力学的影响,我们将把核磁共振的应用扩展到生物化学等新领域。加拿大将受益于领先世界的先进材料研究,其结果将导致对材料界面的更好的基本理解,从而优化当前技术和工程全新技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Macfarlane, William其他文献

Macfarlane, William的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Development and Application of T1rho Dispersion Imaging of Aging Muscle
衰老肌肉T1rho色散成像的开发与应用
  • 批准号:
    10714064
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Development and Application of beta-detected NMR to Quantum Materials and Beyond
β 检测核磁共振在量子材料及其他领域的开发和应用
  • 批准号:
    RGPIN-2019-04257
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of beta-detected NMR to Quantum Materials and Beyond
β 检测核磁共振在量子材料及其他领域的开发和应用
  • 批准号:
    RGPIN-2019-04257
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of beta-detected NMR to Quantum Materials and Beyond
β 检测核磁共振在量子材料及其他领域的开发和应用
  • 批准号:
    RGPIN-2019-04257
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Role of THG-1 in squamous cell carcinoma development and its application to cancer therapy
THG-1在鳞状细胞癌发生发展中的作用及其在癌症治疗中的应用
  • 批准号:
    19K07473
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of 3D vascularized model of Blood Brain Barrier and its application to Alzheimer disease research
血脑屏障3D血管化模型的开发及其在阿尔茨海默病研究中的应用
  • 批准号:
    10016386
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
  • 批准号:
    RGPIN-2014-04806
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
  • 批准号:
    RGPIN-2014-04806
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of Depth-Resolved beta-Detected Nuclear Magnetic Resonance to electronic, ionic and molecular phenomena in the Solid State
深度分辨 β 检测核磁共振技术在固态电子、离子和分子现象中的开发和应用
  • 批准号:
    RGPIN-2014-04806
  • 财政年份:
    2016
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Application of Regio- and Stereoselective beta-Mannosylation Utilizing Organoboron Reagents
利用有机硼试剂进行区域和立体选择性β-甘露糖基化的开发和应用
  • 批准号:
    16K05781
  • 财政年份:
    2016
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了