Combinatorial aspects of representation theory and geometry

表示论和几何的组合方面

基本信息

  • 批准号:
    RGPIN-2016-04872
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Combinatorics is the study of discrete arrangements, such as the different ways of dividing n balls among k different boxes. Often, it is possible to understand such discrete arrangements much better than we could hope to understand the continuously changing phenomena that we typically encounter in real life. However, as it turns out, discrete structures can have important implications, in real life, and also in other areas of mathematics. My proposal consists of using combinatorial techniques to understand mathematical structures which arise in algebra and physics.***The physics I am interested in is the problem of calculating scattering amplitudes. This is quite a natural and fundamental problem. We throw a collection of particles at each other. They interact somehow, and then zoom off. We want to know the outcome. Because we are in a quantum setting, the outcome is uncertain, but there are different possibilities, to each of which a probability can be assigned. The usual approach to calculating scattering amplitudes is to write down what is typically a very large number of Feynman diagrams which encode the possible interactions among the particles, and then add up a contribution from each. It is a surprising fact that when we do this, the answer is simple and symmetrical in a way that the individual terms being summed are not. This suggests that the Feynman diagram approach might be obscuring the fundamental simplicity of what is happening. A new approach to scattering amplitudes has been developed by Nima Arkani-Hamed and a team of collaborators. In their approach, Feynman diagrams are replaced by something which the physicists call "on-shell diagrams", but which had already been studied by Alex Postnikov and other mathematicians under the name of "plabic graphs". By studying the combinatorics and geometry associated to these plabic graphs, in collaboration with Nima Arkani-Hamed and Jaroslav Trnka, I hope to come to a better understanding of this new approach. ***Combinatorics can also be applied in algebraic settings. One way to do this is to start from a combinatorial system and associate some kind of algebra to it. Our understanding of the combinatorics will likely help us to understand such algebras. It is also possible that powerful algebraic tools may then also improve our understanding of the combinatorics from which we set out. To be a bit more specific, I am interested in links between the combinatorics of reflection groups (a generalization of permutations) and the representation theory of preprojective algebras and their quotients. **
组合学是研究离散排列的学科,例如在k个不同的盒子中划分n个球的不同方法。 通常情况下,我们可以更好地理解这种离散的安排,而不是我们希望理解我们通常在真实的生活中遇到的不断变化的现象。 然而,事实证明,离散结构可以在真实的生活中以及其他数学领域中产生重要的影响。 我的建议包括使用组合技术来理解代数和物理中出现的数学结构。我感兴趣的物理学是计算散射振幅的问题。 这是一个非常自然和根本的问题。 我们向彼此投掷一组粒子。 它们以某种方式相互作用,然后迅速消失。 我们想知道结果。 因为我们处于量子环境中,结果是不确定的,但有不同的可能性,每一种可能性都可以被分配一个概率。 计算散射振幅的通常方法是写下通常是非常大量的费曼图,这些图编码了粒子之间可能的相互作用,然后将每个图的贡献相加。 令人惊讶的是,当我们这样做时,答案是简单且对称的,而被求和的各个项却不是这样。 这表明费曼图方法可能掩盖了正在发生的事情的基本简单性。 Nima Arkani-Hamed和一组合作者开发了一种新的散射振幅方法。 在他们的方法中,费曼图被物理学家称为“壳上图”的东西所取代,但Alex Postnikov和其他数学家已经以“plabic graphs”的名义进行了研究。 通过与Nima Arkani-Hamed和Jaroslav Trnka合作,研究与这些平面图相关的组合数学和几何学,我希望能更好地理解这种新方法。 * 组合数学也可以应用于代数设置。 一种方法是从一个组合系统出发,将某种代数与之联系起来,我们对组合学的理解可能有助于我们理解这种代数。 强大的代数工具也可能提高我们对组合学的理解。 更具体地说,我感兴趣的是反射群的组合学(置换的推广)与预投射代数及其子代数的表示论之间的联系。 **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas, Arthur其他文献

Where are the Behavioral Sleep Medicine Providers and Where are They Needed? A Geographic Assessment
  • DOI:
    10.1080/15402002.2016.1173551
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Thomas, Arthur;Grandner, Michael;Perlis, Michael L.
  • 通讯作者:
    Perlis, Michael L.

Thomas, Arthur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas, Arthur', 18)}}的其他基金

Combinatorics of finite-dimensional algebras, with applications to scattering amplitudes
有限维代数的组合及其在散射振幅中的应用
  • 批准号:
    RGPIN-2022-03960
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial aspects of representation theory and geometry
表示论和几何的组合方面
  • 批准号:
    RGPIN-2016-04872
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial aspects of representation theory and geometry
表示论和几何的组合方面
  • 批准号:
    RGPIN-2016-04872
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Algebra, combinatorics, and mathematical computer science
代数、组合学和数学计算机科学
  • 批准号:
    1000230635-2014
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs
Algebra, combinatorics, and mathematical computer science
代数、组合学和数学计算机科学
  • 批准号:
    1000230635-2014
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
  • 批准号:
    60503032
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
  • 批准号:
    RGPIN-2018-04044
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
  • 批准号:
    RGPIN-2018-04044
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial aspects of representation theory and geometry
表示论和几何的组合方面
  • 批准号:
    RGPIN-2016-04872
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial aspects of derived representation theory
派生表示论的组合方面
  • 批准号:
    2436975
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Studentship
Combinatorial aspects of representation theory and geometry
表示论和几何的组合方面
  • 批准号:
    RGPIN-2016-04872
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
  • 批准号:
    RGPIN-2018-04044
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
  • 批准号:
    RGPIN-2018-04044
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial aspects of representation theory and geometry
表示论和几何的组合方面
  • 批准号:
    493021-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Combinatorial aspects of representation theory and geometry
表示论和几何的组合方面
  • 批准号:
    RGPIN-2016-04872
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
  • 批准号:
    RGPIN-2018-04044
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了