Combinatorics of finite-dimensional algebras, with applications to scattering amplitudes

有限维代数的组合及其在散射振幅中的应用

基本信息

  • 批准号:
    RGPIN-2022-03960
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The scattering amplitudes problem in physics is the problem of describing what happens when elementary particles approach, interact, and scatter. As well as being of fundamental theoretical importance, this problem is also of practical significance: a precise knowledge of scattering amplitudes is needed in order to analyze data from particle accelerators such as the Large Hadron Collider.  The traditional approach to this problem uses a technique called "Feynman diagrams." Each Feynman diagram is a schematic representation of one possible interaction of the particles; in order to solve the scattering amplitudes problem, one sums up contributions from the (many) relevant Feynman diagrams. Some ten years ago, a group of physicists around Nima Arkani-Hamed of the Institute for Advanced Study in Princeton initiated a program to recast the solution to the scattering amplitudes problem in a more holistic way. Their approach has, surprisingly, connected scattering amplitudes to a number of topics in pure mathematics in which I am an expert, notably cluster algebras and the representation theory of finite dimensional algebras. My proposal is two-fold: I will address the new and exciting mathematical questions originating from the physicsts' approach, and I will collaborate actively with physicists to apply these results to the scattering amplitudes problem. The physicists' approach to the scattering amplitudes problem revolves around the construction of a geometrical object which contains the essential element of the answer encoded within it. For the quantum field theory under discussion, this requires the construction of a series of polyhedra of increasing complexity. The 0-th polyhedron in the series is the associahedron, originally described by James Stasheff in the 1960's, but seeing renewed interest recently because of its connection to cluster algebras. Together with collaborators, I have shown that the next polytope in the series is also connected to a cluster algebra. I propose to use cluster algebras, and related finite dimensional algebras, to construct all the needed polyhedra. There are also algebraic varieties which provide important non-polyhedral analogues of these spaces, defined by non-linear equations. These algebraic varieties turn out to be defined for a broad class of finite-dimensional algebras, and to be closely related to their tau-tilting theory. These varieties are a fascinating new object of study which can be motivated entirely from within the study of representation theory, but they would never have arisen outside of the context of the interplay between scattering amplitudes and representation theory in which I am engaged.  To summarize, this research program will shed new light on cluster algebras and representation theory of finite dimensional algebras, as well as driving forward research in scattering amplitudes.
物理学中的散射振幅问题是描述当基本粒子接近、相互作用和散射时发生的事情的问题。这个问题不仅具有重要的理论意义,而且也具有实际意义:为了分析来自粒子加速器(如大型强子对撞机)的数据,需要精确地了解散射振幅。解决这个问题的传统方法是使用一种称为“费曼图”的技术。每个费曼图都是粒子之间一种可能相互作用的示意图;为了解决散射振幅问题,人们总结了(许多)相关费曼图的贡献。大约10年前,普林斯顿高等研究院(Institute for Advanced Study in Princeton)的尼玛·阿尔卡尼-哈米德(Nima Arkani-Hamed)周围的一群物理学家发起了一个项目,以更全面的方式重新设计散射振幅问题的解决方案。他们的做法,令人惊讶的是,连接散射振幅的一些议题,在纯数学,我是一个专家,特别是集群代数和表示理论的有限维代数。我的建议有两个方面:我将解决新的和令人兴奋的数学问题起源于物理学家的方法,我将积极与物理学家合作,将这些结果应用到散射振幅问题。物理学家解决散射振幅问题的方法是围绕着构造一个几何对象,这个几何对象包含了编码在其中的答案的基本元素。对于正在讨论的量子场论,这需要构造一系列越来越复杂的多面体。第0个多面体是associahedron,最初由James Stasheff在20世纪60年代描述,但最近由于它与簇代数的联系而重新引起了人们的兴趣。与合作者一起,我已经证明了系列中的下一个多面体也连接到一个簇代数。我建议使用簇代数,以及相关的有限维代数,来构造所有需要的多面体。也有代数簇提供了重要的非多面体类似物的这些空间,定义的非线性方程。这些代数簇原来是定义为一个广泛的一类有限维代数,并密切相关的τ-倾斜理论。这些品种是一个迷人的新的研究对象,可以完全从研究表示理论的动机,但他们永远不会出现的散射振幅和表示理论之间的相互作用,我从事的背景之外。总之,这个研究计划将揭示新的光簇代数和表示理论的有限维代数,也推动了散射振幅的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas, Arthur其他文献

Where are the Behavioral Sleep Medicine Providers and Where are They Needed? A Geographic Assessment
  • DOI:
    10.1080/15402002.2016.1173551
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Thomas, Arthur;Grandner, Michael;Perlis, Michael L.
  • 通讯作者:
    Perlis, Michael L.

Thomas, Arthur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas, Arthur', 18)}}的其他基金

Combinatorial aspects of representation theory and geometry
表示论和几何的组合方面
  • 批准号:
    RGPIN-2016-04872
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial aspects of representation theory and geometry
表示论和几何的组合方面
  • 批准号:
    RGPIN-2016-04872
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Algebra, combinatorics, and mathematical computer science
代数、组合学和数学计算机科学
  • 批准号:
    1000230635-2014
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Combinatorial aspects of representation theory and geometry
表示论和几何的组合方面
  • 批准号:
    RGPIN-2016-04872
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Algebra, combinatorics, and mathematical computer science
代数、组合学和数学计算机科学
  • 批准号:
    1000230635-2014
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

Whitham调制理论在色散方程间断初值问题中的应用
  • 批准号:
    12001556
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Toward Patient-Specific Computational Modeling of Tricuspid Valve Repair in Hypoplastic Left Heart Syndrome
左心发育不全综合征三尖瓣修复的患者特异性计算模型
  • 批准号:
    10643122
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
  • 批准号:
    10638817
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
The interplay between active and passive mechanics in the aging bladder
老化膀胱中主动和被动力学之间的相互作用
  • 批准号:
    10827248
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
Conference: Finite Dimensional Integrable Systems 2023
会议:有限维可积系统 2023
  • 批准号:
    2308659
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Further extension of the distribution theory of covariance matrices on finite dimensional field
有限维域上协方差矩阵分布理论的进一步推广
  • 批准号:
    23K11016
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Finite Dimensional Integrable Systems 2022
会议:有限维可积系统 2022
  • 批准号:
    2221910
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
  • 批准号:
    RGPIN-2022-03600
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Pre-Clinical Optimization of MeniscoFix, a Novel Total Meniscus Replacement Implant
MeniscoFix(一种新型全半月板置换植入物)的临床前优化
  • 批准号:
    10547466
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
  • 批准号:
    10437327
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
Patient Specific 3D Printed Diabetic Insoles to Reduce Plantar Pressure
患者专用 3D 打印糖尿病鞋垫可减少足底压力
  • 批准号:
    10425710
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了