Autonomous robotics in noisy and delayed environments

嘈杂和延迟环境中的自主机器人

基本信息

  • 批准号:
    RGPIN-2016-04635
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This research aims to develop the methods and processes that enable the development and deployment of autonomous robots in all environments wherein robots can contribute to safety and productivity, especially in time-delayed environments. The time delay comes from several different sources as sensors, computation, actuators, communication and interactions among different parts of the system, especially robot to robot (or agent to agent) interaction. We are primarily interested in the case of on-line real-time learning applied to multi-robot environments in which emergence of individual and group behaviours in collectives of robots arise and in which time-delays could lead to different, or even unstable, behaviours, individually or collectively.*** ***For the purposes of this application, individual behaviour is defined by how a single robot chooses to act (in terms of policies or strategies) given that it perceives the environment to be at a given state. The way the robot perceives the state of the environment is inherently imprecise, limited, noisy and potentially time-delayed. Also, the presence of other robots change the environment in such a way that the relationship with another single robot may affect the decision taken at any given time. Group behaviour is how the collective may act as a group when faced to conflicting roles and tasks. Group behaviours are linked to individual behaviours in a manner that is not presently completely known.****This research intends to apply learning algorithms based on reinforcement learning techniques (and its derivatives) in order to produce on-line real-time capable robots that can be applied to actual applications such as the location and disruption of improvised explosive devices (IED), object identification, mine and tunnel navigation, aerial surveillance, underwater mapping, navigation in crowded environments and so on.*** ***The representation of the environment is to be done by using learning algorithms as well as decentralized control based on Model Predictive Control (MPC), especially when considering the interactions among agents (either cooperative when the agents have a common goal or objective or competitive when the agents do not have an explicit representation of the goal of the others in nature). The learning will be applied to two different layers: (i) the individual execution of a task; and (ii) the interaction among agents.*** ***The algorithms developed will be tested in real robotic platforms that are compliant with the Robot Operating System (ROS). These algorithms are needed to run in real-time with the noisy and delayed sensor readings. Furthermore, stochastic delays in the processing of the control algorithms are possible. The platforms are composed of ground and aerial vehicles and the experimental facility is already available at the Royal Military College of Canada (RMCC).**
该研究旨在开发能够在所有环境中开发和部署自主机器人的方法和流程,其中机器人可以有助于安全和生产力,特别是在延时环境中。时间延迟来自几个不同的来源,如传感器,计算,执行器,通信和系统不同部分之间的交互,特别是机器人到机器人(或代理到代理)的交互。我们主要感兴趣的是应用于多机器人环境的在线实时学习的情况,在这种环境中,机器人集体中出现了个体和群体行为,并且时间延迟可能导致不同的,甚至不稳定的行为,个体或集体。* 在本申请中,个体行为是由单个机器人在感知到环境处于给定状态的情况下选择如何行动(在策略或策略方面)来定义的。机器人感知环境状态的方式本质上是不精确的,有限的,嘈杂的和潜在的时间延迟。此外,其他机器人的存在会改变环境,以至于与另一个机器人的关系可能会影响在任何给定时间做出的决定。群体行为是当面临相互冲突的角色和任务时,集体如何作为一个群体行事。群体行为与个人行为的联系方式目前尚不完全清楚。这项研究旨在应用基于强化学习技术(及其衍生物)的学习算法,以生产在线实时能力的机器人,这些机器人可应用于实际应用,如简易爆炸装置(IED)的定位和破坏,物体识别,矿井和隧道导航,空中监视,水下测绘,拥挤环境中的导航等。* 环境的表示是通过使用学习算法以及基于模型预测控制(MPC)的分散控制来完成的,特别是在考虑代理之间的交互时(当代理具有共同目标或目标时是合作的,或者当代理没有明确表示其他人的目标时是竞争的)。学习将应用于两个不同的层:(i)任务的单独执行;以及(ii)代理之间的交互。* 开发的算法将在符合机器人操作系统(ROS)的真实的机器人平台中进行测试。这些算法需要在有噪声和延迟的传感器读数的情况下实时运行。此外,在控制算法的处理中的随机延迟是可能的。这些平台由地面和空中飞行器组成,加拿大皇家军事学院(RMCC)已经提供了实验设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Givigi, Sidney其他文献

Givigi, Sidney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Givigi, Sidney', 18)}}的其他基金

Cooperation of networked multi robot systems using control theory and machine learning
使用控制理论和机器学习的网络化多机器人系统的协作
  • 批准号:
    DGDND-2022-04277
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Cooperation of networked multi robot systems using control theory and machine learning
使用控制理论和机器学习的网络化多机器人系统的协作
  • 批准号:
    RGPIN-2022-04277
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
  • 批准号:
    RGPIN-2016-04635
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
  • 批准号:
    RGPIN-2016-04635
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Safe Adaptive Social Cyber Physical Systems
安全自适应社交网络物理系统
  • 批准号:
    RTI-2020-00733
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Research Tools and Instruments
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
  • 批准号:
    RGPIN-2016-04635
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
  • 批准号:
    RGPIN-2016-04635
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous robotics in noisy and delayed environments
嘈杂和延迟环境中的自主机器人
  • 批准号:
    RGPIN-2016-04635
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
  • 批准号:
    10110390
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    EU-Funded
Reverse Design of Tuneable 4D Printed Materials for Soft Robotics
用于软体机器人的可调谐 4D 打印材料的逆向设计
  • 批准号:
    DE240100960
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Democratizing Robot Learning for Assistive Robotics in MCI
职业:MCI 辅助机器人的机器人学习民主化
  • 批准号:
    2340177
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Continuing Grant
CAREER: Manufacturing of Solid Particle-Liquid Metal Mixtures for Soft Robotics and Stretchable Electronics
职业:制造用于软机器人和可拉伸电子产品的固体颗粒-液体金属混合物
  • 批准号:
    2339780
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
REU Site: Undergraduate Robotics Research for Rural Appalachia
REU 网站:阿巴拉契亚农村地区本科生机器人研究
  • 批准号:
    2348288
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Human-centric Digital Twin Approaches to Trustworthy AI and Robotics for Improved Working Conditions
以人为本的数字孪生方法,实现值得信赖的人工智能和机器人技术,以改善工作条件
  • 批准号:
    10109582
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    EU-Funded
CAREER: Integrating Robotics and Socio-emotional Learning for Incarcerated Middle School Students
职业:将机器人技术与被监禁中学生的社会情感学习相结合
  • 批准号:
    2404954
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Continuing Grant
MyTurn: An Afterschool Social Robotics Program to Promote Interest in Computing Among Middle School Students
MyTurn:一个课后社交机器人项目,旨在提高中学生对计算的兴趣
  • 批准号:
    2342099
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Agricultural Robotics and Automation Technologies
农业机器人及自动化技术
  • 批准号:
    2348815
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Hybrid Robotics for Future Reconfigurable Manufacturing
用于未来可重构制造的混合机器人
  • 批准号:
    2905321
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了