The Development of Hierarchical Surrogate Models of Low Frequency Electromagnetic Devices for Robust Design Systems
鲁棒设计系统低频电磁器件分层代理模型的开发
基本信息
- 批准号:RGPIN-2015-05790
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The increasing use of energy from carbon based fuels by society is having a detrimental effect on the environment in terms of pollution, global warming, etc. Reducing these effects requires a reduction in energy needs even as the demand for devices consuming energy increases. A movement towards electrical machines is seen as one method of reducing some of the effects, resulting in a growing demand for such devices. In fact, the majority of the world's electrical energy is both produced by electromechanical energy conversion (generators producing 98% of the supply) and used by electric motors both industrially and domestically. Electric motors are estimated to consume about 70% of the world's electrical energy (this is 80% in Canada). Reducing energy demands, requires that the efficiencies of these devices are as high as possible and regulations exist, in Europe and North America, on minimum efficiency levels. With the introduction of low cost power electronics controls and new materials, it is possible to design machines to meet the requirements. However, many of the traditional design tools are no longer applicable. Thus there is a need to develop new tools and processes capable of predicting the performance of a device accurately before it is actually constructed. One approach to doing this is to solve for the electromagnetic field in the device and use this to predict the performance. This is computationally expensive and not viable for embedding in an iterative design process. Another approach is to develop a high level model (a surrogate) representing the behavior of the device. While moving from a field solution to a surrogate is relatively easy, moving in the reverse direction is generally difficult due to information loss in surrogate creation. For a design process which is capable of improving quantities such as efficiency, both mappings must exist. The innovation in this proposal is to generate these mappings automatically and then implement the simplest model directly on a core of a Graphics Processing Unit (GPU), thus allowing a low cost massively parallel system to be built. A series of increasingly detailed surrogates will be constructed to allow the design process to operate at several levels and a design system to be created which can generate an optimized device meeting the requirements. This work will be implemented by a team of 5 Master's and 2 Ph.D. students and a Postdoctoral researcher and will build on existing research at McGill through a sequence of short term objectives. The HQP thus trained will be of value both to the research community and industry. The work will benefit Canadian companies, e.g. Magna, TM4, GE, etc., by creating a new range of powerful design tools capable of creating electrical machines which are easier and cheaper to manufacture. It will advance the state-of-the-art in electrical machine design and move Canada into a leading position in this technology in the world.
社会越来越多地使用来自碳基燃料的能量,在污染、全球变暖等方面对环境产生有害影响。即使对消耗能量的设备的需求增加,减少这些影响也需要减少能量需求。向电机的发展被视为减少某些影响的一种方法,从而导致对此类设备的需求不断增长。事实上,世界上大部分电能都是通过机电能量转换产生的(发电机产生98%的供应),并由工业和家用电动机使用。据估计,电动机消耗了世界上约70%的电能(在加拿大为80%)。减少能源需求需要这些设备的效率尽可能高,并且在欧洲和北美存在关于最低效率水平的法规。随着低成本电力电子控制和新材料的引入,可以设计出满足要求的机器。然而,许多传统的设计工具不再适用。因此,需要开发能够在实际构建之前准确预测装置的性能的新工具和方法。实现这一点的一种方法是求解器件中的电磁场,并使用该电磁场来预测性能。这在计算上是昂贵的,并且对于在迭代设计过程中嵌入是不可行的。另一种方法是开发表示设备行为的高级模型(替代)。虽然从字段解决方案移动到代理相对容易,但由于代理创建过程中的信息丢失,反向移动通常很困难。对于一个设计过程,这是能够提高数量,如效率,这两个映射必须存在。该提案的创新之处在于自动生成这些映射,然后直接在图形处理单元(GPU)的核心上实现最简单的模型,从而允许构建低成本的大规模并行系统。将构建一系列越来越详细的替代品,以允许设计过程在多个级别上运行,并创建一个设计系统,该系统可以生成满足要求的优化器件。这项工作将由5名硕士和2名博士组成的团队实施。学生和一名博士后研究员,并将通过一系列短期目标在麦吉尔现有研究的基础上再接再厉。这样培养出来的HQP对研究界和工业界都有价值。这项工作将有利于加拿大公司,如麦格纳,TM4,通用电气等,通过创造一系列新的强大的设计工具,能够创造更容易和更便宜的制造电机。它将推动电机设计的最新发展,并使加拿大在该技术方面处于世界领先地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lowther, David其他文献
Deep Learning for Magnetic Field Estimation
- DOI:
10.1109/tmag.2019.2899304 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:2.1
- 作者:
Khan, Arbaaz;Ghorbanian, Vahid;Lowther, David - 通讯作者:
Lowther, David
Efficiency Map Prediction of Motor Drives Using Deep Learning
- DOI:
10.1109/tmag.2019.2957162 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:2.1
- 作者:
Khan, Arbaaz;Mohammadi, Mohammad Hossain;Lowther, David - 通讯作者:
Lowther, David
Lowther, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lowther, David', 18)}}的其他基金
Augmented Simulation Models for the Initial Multi-physics Design of Electrical Machines
电机初始多物理场设计的增强仿真模型
- 批准号:
RGPIN-2020-05126 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Augmented Simulation Models for the Initial Multi-physics Design of Electrical Machines
电机初始多物理场设计的增强仿真模型
- 批准号:
RGPIN-2020-05126 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Augmented Simulation Models for the Initial Multi-physics Design of Electrical Machines
电机初始多物理场设计的增强仿真模型
- 批准号:
RGPIN-2020-05126 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
The Development of Hierarchical Surrogate Models of Low Frequency Electromagnetic Devices for Robust Design Systems
鲁棒设计系统低频电磁器件分层代理模型的开发
- 批准号:
RGPIN-2015-05790 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
The Development of Hierarchical Surrogate Models of Low Frequency Electromagnetic Devices for Robust Design Systems
鲁棒设计系统低频电磁器件分层代理模型的开发
- 批准号:
RGPIN-2015-05790 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
The Development of Hierarchical Surrogate Models of Low Frequency Electromagnetic Devices for Robust Design Systems
鲁棒设计系统低频电磁器件分层代理模型的开发
- 批准号:
RGPIN-2015-05790 - 财政年份:2016
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Precision 6 DOF Pose Tracker for Application to Welding Simulation
适用于焊接模拟的精密 6 DOF 位姿跟踪器
- 批准号:
485548-2015 - 财政年份:2015
- 资助金额:
$ 2.7万 - 项目类别:
Engage Grants Program
The Development of Hierarchical Surrogate Models of Low Frequency Electromagnetic Devices for Robust Design Systems
鲁棒设计系统低频电磁器件分层代理模型的开发
- 批准号:
RGPIN-2015-05790 - 财政年份:2015
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Multi-objective optimization and parameter uncertainty in the design of low frequency electromagnetic devices and systems
低频电磁装置与系统设计中的多目标优化与参数不确定性
- 批准号:
1735-2010 - 财政年份:2014
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Multi-objective optimization and parameter uncertainty in the design of low frequency electromagnetic devices and systems
低频电磁装置与系统设计中的多目标优化与参数不确定性
- 批准号:
1735-2010 - 财政年份:2013
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
丙烷脱氢Pt@hierarchical zeolite催化剂的设计制备与反应调控
- 批准号:22178062
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
CAREER: Understanding how hierarchical organization of growth plate stem cells controls skeletal growth
职业:了解生长板干细胞的分层组织如何控制骨骼生长
- 批准号:
2339761 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Continuing Grant
Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
- 批准号:
2344586 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Functional-unit-based hierarchical nanocomposites for sustainable future
基于功能单元的分层纳米复合材料促进可持续未来
- 批准号:
FT230100436 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
ARC Future Fellowships
A Platform for Hierarchical Data-Driven Design, Fabrication, and Control of Modular Soft Robots with Slender Beams for Locomotion and Manipulation
用于具有细长梁的移动和操纵模块化软机器人的分层数据驱动设计、制造和控制平台
- 批准号:
23K26071 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Strategies for predicting functionality of polymer electrolyte membranes based on dynamics and hierarchical structures
基于动力学和分层结构的聚合物电解质膜功能预测策略
- 批准号:
24K08091 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
- 批准号:
2337507 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Open-world computer vision by detecting and tracking hierarchical objects
通过检测和跟踪分层对象来实现开放世界计算机视觉
- 批准号:
DE240100967 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Early Career Researcher Award