Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
基本信息
- 批准号:RGPIN-2014-03736
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are currently two broad technologies used for converting sunlight to electricity; Si solar cells used at 1-sun (in a flat panel format) and III-V based multijunction cells used in conjunction with concentration optics and tracking systems. As single junction devices, Si cells are limited theoretically to ~30% efficiency and have reached their practical limit of ~25%. Multijunction technology is likely to produce cells exceeding 50% efficiency under concentration this decade; however the cell costs are prohibitively high to be used in 1-sun applications. Therefore, the greatest imperative in Si cell technology is to reduce the cost, while maintaining high efficiency. There is also a tremendous opportunity to develop a multijunction cell technology that is sufficiently cost effective to be implemented in 1-sun applications. Based on recent research results, we have made significant progress in both directions and continued research efforts are likely to yield breakthroughs.**Since the Si material is a significant fraction of the cell cost, there is substantial incentive to use thinner wafers than the current ~180 µm. However, the Si wafer in use today serves a dual purpose. It provides mechanical support for wafer handling and since Si is a poor optical absorber its thickness is required for optimal absorption. However, the optical path length can be increased by at least a factor of 50 using advanced light trapping strategies, with the potential to achieve efficiencies comparable to conventional thick cells, while virtually eliminating the material cost. We have fabricated 10 µm thick single-crystal Si-membrane solar cells, incorporating simple light trapping methods, yielding a device efficiency of ~10%. The design (via numerical simulation), fabrication (via low cost methods), optical characterization (corroborating designs) and implementation of more advanced light trapping strategies are expected to yield cells with thicknesses in the range of 2-10 µm and efficiencies exceeding 20%. Thin Si cells with advanced designs have the potential to dramatically reduce cost, while maintaining efficiency.**In multijunction solar cells, each sub-cell is designed to optimally capture energy from a portion of the solar spectrum. An alternate approach to Ge substrates is to use much less expensive Si substrates for the bottom cell, leveraging the tremendous infrastructure of Si cell technology. There are two impediments with this approach, firstly that the Si cell becomes the current limiting cell for the triple junction device, compromising the energy conversion from the top cells and secondly that it has not proven possible to grow materials on Si substrates with sufficiently high quality. In our recent work, we have found solutions to both problems, with the invention of areal current matching to match the current of the Si cell to the top cells and the development of wafer bonding methods to join separately optimized Si and III-V cells in a hybrid integration approach, yielding cells with 25.8% efficiency, a world record for a Si-based multijunction solar cell. We believe that cells with efficiency in excess of 30% can be achieved with this method.**However, our long term objective is to make multijunction cells that are sufficiently inexpensive for use in 1-sun applications, while exceeding the present limits of conventional 1-sun cells. We propose to make high quality III-V solar cells using a much less expensive process than the MOCVD process currently used and combine them with Si bottom cells via wafer bonding and areal current matching. This ambitious approach would be transformative, providing cells with significantly higher efficiencies than currently available, suitable for widespread deployment.
目前有两种广泛的技术用于将太阳光转换为电力;在1-sun下使用的Si太阳能电池(以平板格式)和与聚光光学和跟踪系统结合使用的基于III-V的多结电池。作为单结器件,Si电池的理论效率限制在~30%,并且已经达到其~ 25%的实际极限。在这十年中,多结技术很可能在浓缩下生产超过50%效率的电池;然而,电池成本高得令人望而却步,无法用于1-sun应用。因此,在硅电池技术中最重要的是降低成本,同时保持高效率。还有一个巨大的机会来开发一种多结电池技术,这种技术具有足够的成本效益,可以在1个太阳的应用中实施。根据最近的研究结果,我们在这两个方向上都取得了重大进展,继续研究可能会取得突破。由于硅材料是电池成本的重要组成部分,因此有很大的动机使用比目前约180 µm更薄的晶圆。然而,当今使用的硅晶片有双重用途。它为晶片处理提供了机械支撑,并且由于Si是较差的光学吸收体,因此需要其厚度来实现最佳吸收。然而,使用先进的光捕获策略,光路长度可以增加至少50倍,具有实现与传统厚电池相当的效率的潜力,同时几乎消除了材料成本。我们已经制造了10微米厚的单晶Si膜太阳能电池,结合简单的光捕获方法,产生约10%的器件效率。设计(通过数值模拟),制造(通过低成本方法),光学表征(确证设计)和更先进的光捕获策略的实施预计将产生厚度在2-10 µm范围内的电池,效率超过20%。采用先进设计的薄硅电池有可能在保持效率的同时大幅降低成本。**在多结太阳能电池中,每个子电池被设计为从太阳光谱的一部分最佳地捕获能量。另一种Ge衬底的方法是使用便宜得多的Si衬底作为底部电池,利用Si电池技术的巨大基础设施。这种方法存在两个障碍,首先,Si电池成为三结器件的电流限制电池,损害了来自顶部电池的能量转换,其次,尚未证明可以在Si衬底上以足够高的质量生长材料。在我们最近的工作中,我们已经找到了这两个问题的解决方案,发明了面积电流匹配以将Si电池的电流与顶部电池相匹配,并开发了晶片键合方法以在混合集成方法中将单独优化的Si和III-V电池连接起来,产生效率为25.8%的电池,这是Si基多结太阳能电池的世界纪录。我们相信,通过这种方法可以实现效率超过30%的电池。**然而,我们的长期目标是使多结电池足够便宜地用于1-sun应用,同时超过传统1-sun电池的当前限制。我们建议使用比目前使用的MOCVD工艺便宜得多的工艺来制造高质量的III-V族太阳能电池,并通过晶片键合和面积电流匹配将它们与Si底部电池联合收割机结合。这种雄心勃勃的方法将是变革性的,为电池提供比目前更高的效率,适合广泛部署。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kleiman, Rafael其他文献
Kleiman, Rafael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kleiman, Rafael', 18)}}的其他基金
Novel Cells and Systems for Intermediate Concentration Photovoltaics
用于中聚光光伏的新型电池和系统
- 批准号:
RGPIN-2020-05704 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Novel Cells and Systems for Intermediate Concentration Photovoltaics
用于中聚光光伏的新型电池和系统
- 批准号:
RGPIN-2020-05704 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Novel Cells and Systems for Intermediate Concentration Photovoltaics
用于中聚光光伏的新型电池和系统
- 批准号:
RGPIN-2020-05704 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Selective Area Growth of Semiconductor Structures by MOCVD for Telecommunication Applications
用于电信应用的 MOCVD 半导体结构的选择性区域生长
- 批准号:
543559-2019 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Engage Grants Program
Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
- 批准号:
RGPIN-2014-03736 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
- 批准号:
RGPIN-2014-03736 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
- 批准号:
462022-2014 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Improved thermal management of solar cells through thermal transpiration
通过热蒸腾改善太阳能电池的热管理
- 批准号:
499423-2016 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Engage Grants Program
Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
- 批准号:
462022-2014 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
- 批准号:
RGPIN-2014-03736 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
COST1通过P小体调控植物渗透胁迫响应的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
COST1蛋白动态在调控自噬及植物抗旱中的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
电渣重熔625℃超超临界汽轮机转子用钢COST-FB2冶金学基础研究
- 批准号:51974076
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Novel process for manufacturing Higher performance And LOwer cost synthetic industrial diamond (HALO)
制造更高性能和更低成本的合成工业金刚石 (HALO) 的新工艺
- 批准号:
10030745 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Investment Accelerator
Developing a lower cost, higher efficiency SOFC mCHP system for the UK residential market.
为英国住宅市场开发成本更低、效率更高的 SOFC mCHP 系统。
- 批准号:
103235 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Collaborative R&D
Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
- 批准号:
RGPIN-2014-03736 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
- 批准号:
RGPIN-2014-03736 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
- 批准号:
462022-2014 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
- 批准号:
462022-2014 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
- 批准号:
RGPIN-2014-03736 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
- 批准号:
RGPIN-2014-03736 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Lower Cost and Higher Efficiency Solar Cells for 1-sun Applications
适用于 1 太阳应用的成本更低、效率更高的太阳能电池
- 批准号:
462022-2014 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
SBIR Phase II: The Development of Higher Voltage, Longer Life and Lower Cost Activated Carbon Materials for Supercapacitors
SBIR第二阶段:开发用于超级电容器的更高电压、更长寿命和更低成本的活性炭材料
- 批准号:
1430918 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant