Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes

气体/超临界流体注射微/纳米层共挤发泡工艺

基本信息

  • 批准号:
    RGPIN-2019-05778
  • 负责人:
  • 金额:
    $ 3.21万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Most new advanced polymeric products in the automotive, aerospace, biomedical, and food and electronics packaging industries contain two or more polymers and functional additives resulting in desired properties contributed from each component. The coextrusion process extrudes multiple materials simultaneously in a one-step process to form a multilayer structure for unique applications. Foams can be prepared from any plastic by introducing a gas or supercritical fluid (SCF) within the plastic during processing. Current foam processes are unable to produce high-performance foams with ultra low-density, uniform nano-sized cells and/or gradient cell size distributions. We propose a new micro-/nano-layer (MNL) coextrusion foam process technology to create the synergistic effects between two processes (i.e., MNL coextrusion and foaming). With in-depth understanding of gas/SCF concentration-dependent microstructure and cell structure evolutions, this technology will enable manufacturing of high-performance composite foams with tailored properties. ******This Discovery program focuses on developing and applying the MNL coextrusion foam platform, the first for Canada, to provide fundamental understanding of the manufacture of multiphase nano-structured composite foam materials with tailored properties. Aim 1 will provide the first data set quantifying crystal nucleation, growth, and lamellae orientation under a high-pressure gas/SCF in nano-layered structures, where such data are simply not available. Aim 2 will employ the MNL coextrusion foam platform with a direct gas/SCF injection capability to produce well-controlled low-density, nano-cellular composite foams, which is not currently available. Aim 3 will address gas/SCF sorption and desorption behaviours under both static and dynamic conditions. The dynamic data (i.e., under shear and extensional stresses) are more relevant to real foam processes and are lacking, thus showing a critical need to measure these properties accurately under more process-relevant conditions to understand microstructure and cell morphology evolutions with respect to gas concentration. Collectively, these three aims will enable manufacturing of well-engineered high-performance composite foam materials.******The technological impact of this proposed program on the existing state of knowledge within the polymer and composites engineering and processing community is expected to be significant. In particular, the results will benefit Canadian companies manufacturing value-added plastic materials. Moreover, this interdisciplinary program, which encompasses manufacturing, polymer chemistry, polymer physics and materials science, will provide participating highly qualified personnel (HQP) with unparalleled training experience, helping them to acquire scientific knowledge, practical experience and soft skills, and to establish a professional network that will advance their careers in many disciplines.**
汽车、航空航天、生物医学、食品和电子包装行业中的大多数新型先进聚合物产品都含有两种或更多种聚合物和功能添加剂,从而使每种组分都具有所需的性能。共挤出工艺在一个步骤中同时挤出多种材料,以形成用于独特应用的多层结构。泡沫可以通过在加工过程中在塑料内引入气体或超临界流体(SCF)而由任何塑料制备。目前的泡沫方法不能生产具有超低密度、均匀纳米尺寸泡孔和/或梯度泡孔尺寸分布的高性能泡沫。我们提出了一种新的微/纳米层(MNL)共挤出泡沫工艺技术,以在两种工艺之间产生协同效应(即,MNL共挤出和发泡)。随着对气体/SCF浓度相关微观结构和泡孔结构演变的深入了解,该技术将能够制造具有定制特性的高性能复合泡沫。** 该探索计划的重点是开发和应用MNL共挤泡沫平台,这是加拿大的第一个,旨在提供对具有定制特性的多相纳米结构复合泡沫材料制造的基本理解。目标1将提供第一个数据集量化晶体成核,生长和层状取向下的高压气体/超临界流体在纳米层状结构,这样的数据根本是不可用的。目标2将采用具有直接气体/超临界流体注入能力的MNL共挤出泡沫平台,以生产控制良好的低密度纳米多孔复合泡沫,这是目前尚不可用的。目标3将解决静态和动态条件下的气体/SCF吸附和解吸行为。动态数据(即,在剪切应力和拉伸应力下)与真实的泡沫工艺更相关,并且是缺乏的,因此显示出在更相关的工艺条件下精确测量这些性能以了解微结构和泡孔形态相对于气体浓度的演变的迫切需要。总的来说,这三个目标将使制造精心设计的高性能复合泡沫材料成为可能。预计该计划对聚合物和复合材料工程和加工社区现有知识的技术影响将是显著的。特别是,这些结果将有利于加拿大公司制造增值塑料材料。此外,这个跨学科的计划,其中包括制造,聚合物化学,聚合物物理和材料科学,将提供参与高素质的人员(HQP)与无与伦比的培训经验,帮助他们获得科学知识,实践经验和软技能,并建立一个专业网络,将推动他们的职业生涯在许多学科。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lee, PatrickChangDong其他文献

Lee, PatrickChangDong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lee, PatrickChangDong', 18)}}的其他基金

Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
  • 批准号:
    RGPIN-2019-05778
  • 财政年份:
    2022
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Comprehensive studies on the foaming behavior of polypropylene: from microcellular plastics to nanocellular foams
聚丙烯发泡行为的综合研究:从微孔塑料到纳米孔泡沫
  • 批准号:
    543896-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Collaborative Research and Development Grants
Lightweight Multifunctional Hybrid Nanocomposites and Foams for Advanced Automotive Applications
用于先进汽车应用的轻质多功能混合纳米复合材料和泡沫
  • 批准号:
    570403-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Alliance Grants
Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
  • 批准号:
    RGPIN-2019-05778
  • 财政年份:
    2021
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Greener approaches to recycle spent electric vehicle (EV) battery in a closed Loop
在闭环中回收废旧电动汽车 (EV) 电池的更环保方法
  • 批准号:
    570502-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Alliance Grants
Advanced Visualization System for Microstructure Evolution of Engineered Materials under Controlled Stress
受控应力下工程材料微观结构演化的先进可视化系统
  • 批准号:
    RTI-2022-00323
  • 财政年份:
    2021
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Research Tools and Instruments
Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
  • 批准号:
    RGPIN-2019-05778
  • 财政年份:
    2020
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Comprehensive studies on the foaming behavior of polypropylene: from microcellular plastics to nanocellular foams
聚丙烯发泡行为的综合研究:从微孔塑料到纳米孔泡沫
  • 批准号:
    543896-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Collaborative Research and Development Grants
Ultra-fast Scanning Differential Scanning Calorimetry (DSC) for Advanced Thermal Analysis of Engineered Materials
用于工程材料高级热分析的超快扫描差示扫描量热法 (DSC)
  • 批准号:
    RTI-2020-00725
  • 财政年份:
    2019
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Research Tools and Instruments
Comprehensive studies on the foaming behavior of polypropylene: from microcellular plastics to nanocellular foams
聚丙烯发泡行为的综合研究:从微孔塑料到纳米孔泡沫
  • 批准号:
    543896-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
  • 批准号:
    RGPIN-2019-05778
  • 财政年份:
    2022
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast 2DIR Studies of Dynamics in Dense Gas and Supercritical Fluid Solutions
稠密气体和超临界流体溶液动力学的超快 2DIR 研究
  • 批准号:
    2102427
  • 财政年份:
    2021
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Continuing Grant
Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
  • 批准号:
    RGPIN-2019-05778
  • 财政年份:
    2021
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
  • 批准号:
    RGPIN-2019-05778
  • 财政年份:
    2020
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Development of high-performance multi-functional reversed-phase HPLC with the stationary phase containing gas and supercritical fluid
以气体和超临界流体为固定相的高性能多功能反相高效液相色谱仪的研制
  • 批准号:
    19H02741
  • 财政年份:
    2019
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
  • 批准号:
    DGECR-2019-00205
  • 财政年份:
    2019
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Launch Supplement
CAREER: Understanding Process-Structure-Property Relations in Gas/Supercritical Fluid-Injected Polymer Coextrusion Foam Processes
职业:了解气体/超临界流体注射聚合物共挤泡沫工艺中的工艺-结构-性能关系
  • 批准号:
    1749300
  • 财政年份:
    2018
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
Ultra-high resolution hybrid comprehensive-multidimensional gas and supercritical fluid chromatography for explicit characterisation of petrochemicals
用于石化产品明确表征的超高分辨率混合多维气相和超临界流体色谱
  • 批准号:
    DP130100217
  • 财政年份:
    2013
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Projects
Synthesis and pressure-induced metallization of new noble-gas compounds using strong oxidant supercritical fluid in ultra-high pressure and temperature
在超高压和高温下使用强氧化剂超临界流体合成和压力诱导金属化新型惰性气体化合物
  • 批准号:
    23656383
  • 财政年份:
    2011
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Gas treating, sulphur production and use, supercritical fluid extraction
气体处理、硫磺生产和使用、超临界流体萃取
  • 批准号:
    6065-1989
  • 财政年份:
    1991
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了