Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
基本信息
- 批准号:RGPIN-2019-05778
- 负责人:
- 金额:$ 3.21万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most new advanced polymeric products in the automotive, aerospace, biomedical, and food and electronics packaging industries contain two or more polymers and functional additives resulting in desired properties contributed from each component. The coextrusion process extrudes multiple materials simultaneously in a one-step process to form a multilayer structure for unique applications. Foams can be prepared from any plastic by introducing a gas or supercritical fluid (SCF) within the plastic during processing. Current foam processes are unable to produce high-performance foams with ultra low-density, uniform nano-sized cells and/or gradient cell size distributions. We propose a new micro-/nano-layer (MNL) coextrusion foam process technology to create the synergistic effects between two processes (i.e., MNL coextrusion and foaming). With in-depth understanding of gas/SCF concentration-dependent microstructure and cell structure evolutions, this technology will enable manufacturing of high-performance composite foams with tailored properties.
This Discovery program focuses on developing and applying the MNL coextrusion foam platform, the first for Canada, to provide fundamental understanding of the manufacture of multiphase nano-structured composite foam materials with tailored properties. Aim 1 will provide the first data set quantifying crystal nucleation, growth, and lamellae orientation under a high-pressure gas/SCF in nano-layered structures, where such data are simply not available. Aim 2 will employ the MNL coextrusion foam platform with a direct gas/SCF injection capability to produce well-controlled low-density, nano-cellular composite foams, which is not currently available. Aim 3 will address gas/SCF sorption and desorption behaviours under both static and dynamic conditions. The dynamic data (i.e., under shear and extensional stresses) are more relevant to real foam processes and are lacking, thus showing a critical need to measure these properties accurately under more process-relevant conditions to understand microstructure and cell morphology evolutions with respect to gas concentration. Collectively, these three aims will enable manufacturing of well-engineered high-performance composite foam materials.
The technological impact of this proposed program on the existing state of knowledge within the polymer and composites engineering and processing community is expected to be significant. In particular, the results will benefit Canadian companies manufacturing value-added plastic materials. Moreover, this interdisciplinary program, which encompasses manufacturing, polymer chemistry, polymer physics and materials science, will provide participating highly qualified personnel (HQP) with unparalleled training experience, helping them to acquire scientific knowledge, practical experience and soft skills, and to establish a professional network that will advance their careers in many disciplines.
汽车,航空航天,生物医学以及食品和电子包装行业中的大多数新高级聚合物产品包含两个或多个聚合物和功能添加剂,从而产生了每个组件的所需特性。共截止过程同时将多种材料挤压在一个步骤过程中,以形成用于独特应用的多层结构。可以通过在加工过程中在塑料中引入气体或超临界液(SCF)来制备泡沫。当前的泡沫工艺无法产生具有超低密度,均匀纳米尺寸细胞和/或梯度细胞尺寸分布的高性能泡沫。我们提出了一种新的微型/纳米层(MNL)共扎泡沫工艺技术,以在两个过程(即MNL共截止和泡沫)之间产生协同效应。通过深入了解气体/SCF浓度依赖性微观结构和细胞结构的演变,该技术将能够制造具有量身定制性能的高性能复合泡沫。
该发现计划的重点是开发和应用加拿大第一个的MNL联合排骨泡沫平台,以提供对具有量身定制特性的多相纳米结构复合泡沫材料的基本了解。 AIM 1将提供第一个数据集,量化纳米层结构中高压气/SCF的晶体成核,生长和薄片取向,在这些结构中根本不可用。 AIM 2将采用具有直接气体/SCF注入能力的MNL共截止泡沫平台,以产生良好控制的低密度,纳米纤维组合泡沫,目前尚不可用。 AIM 3将解决静态和动态条件下的气体/SCF吸附和解吸行为。动态数据(即在剪切和伸展应力下)与实际泡沫过程更相关,并且缺乏,因此显示出至关重要的需求,可以在更相关的条件下准确测量这些特性,以了解相对于气体浓度的微观结构和细胞形态发展。总体而言,这三个目标将使设计精良的高性能复合泡沫材料制造。
该建议计划对聚合物和复合材料工程和加工社区中现有知识状态的技术影响预计将是重要的。特别是,结果将使加拿大公司制造增值塑料材料。此外,该跨学科计划涵盖了制造,聚合物化学,聚合物物理和材料科学,将为参与的高素质人员(HQP)提供无与伦比的培训经验,从而帮助他们获得科学知识,实践经验和软技能,并建立一个在许多学科中发展职业的专业网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee, PatrickChangDong其他文献
Lee, PatrickChangDong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee, PatrickChangDong', 18)}}的其他基金
Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
- 批准号:
RGPIN-2019-05778 - 财政年份:2022
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Comprehensive studies on the foaming behavior of polypropylene: from microcellular plastics to nanocellular foams
聚丙烯发泡行为的综合研究:从微孔塑料到纳米孔泡沫
- 批准号:
543896-2019 - 财政年份:2021
- 资助金额:
$ 3.21万 - 项目类别:
Collaborative Research and Development Grants
Lightweight Multifunctional Hybrid Nanocomposites and Foams for Advanced Automotive Applications
用于先进汽车应用的轻质多功能混合纳米复合材料和泡沫
- 批准号:
570403-2021 - 财政年份:2021
- 资助金额:
$ 3.21万 - 项目类别:
Alliance Grants
Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
- 批准号:
RGPIN-2019-05778 - 财政年份:2021
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Advanced Visualization System for Microstructure Evolution of Engineered Materials under Controlled Stress
受控应力下工程材料微观结构演化的先进可视化系统
- 批准号:
RTI-2022-00323 - 财政年份:2021
- 资助金额:
$ 3.21万 - 项目类别:
Research Tools and Instruments
Greener approaches to recycle spent electric vehicle (EV) battery in a closed Loop
在闭环中回收废旧电动汽车 (EV) 电池的更环保方法
- 批准号:
570502-2021 - 财政年份:2021
- 资助金额:
$ 3.21万 - 项目类别:
Alliance Grants
Comprehensive studies on the foaming behavior of polypropylene: from microcellular plastics to nanocellular foams
聚丙烯发泡行为的综合研究:从微孔塑料到纳米孔泡沫
- 批准号:
543896-2019 - 财政年份:2020
- 资助金额:
$ 3.21万 - 项目类别:
Collaborative Research and Development Grants
Ultra-fast Scanning Differential Scanning Calorimetry (DSC) for Advanced Thermal Analysis of Engineered Materials
用于工程材料高级热分析的超快扫描差示扫描量热法 (DSC)
- 批准号:
RTI-2020-00725 - 财政年份:2019
- 资助金额:
$ 3.21万 - 项目类别:
Research Tools and Instruments
Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
- 批准号:
RGPIN-2019-05778 - 财政年份:2019
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Comprehensive studies on the foaming behavior of polypropylene: from microcellular plastics to nanocellular foams
聚丙烯发泡行为的综合研究:从微孔塑料到纳米孔泡沫
- 批准号:
543896-2019 - 财政年份:2019
- 资助金额:
$ 3.21万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
超临界CO2与陆相干酪根-油-水体系的相互作用机理研究
- 批准号:42372164
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
自振脉冲超临界二氧化碳射流调控与多效应协同破煤岩机理研究
- 批准号:52374192
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
CFRP/Ti叠层超临界CO2微量润滑辅助超声螺旋铣孔协同加工机理研究
- 批准号:52365058
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
深部超临界地热条件岩石变形规律及其对水热运移影响机制研究
- 批准号:42372283
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
超临界CO2-水两相渗流条件下岩石溶蚀机理与储层渗透性演化规律
- 批准号:52379107
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
- 批准号:
RGPIN-2019-05778 - 财政年份:2022
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast 2DIR Studies of Dynamics in Dense Gas and Supercritical Fluid Solutions
稠密气体和超临界流体溶液动力学的超快 2DIR 研究
- 批准号:
2102427 - 财政年份:2021
- 资助金额:
$ 3.21万 - 项目类别:
Continuing Grant
Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
- 批准号:
RGPIN-2019-05778 - 财政年份:2021
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Gas/Supercritical Fluid Injected Micro-/Nano-Layer Coextrusion Foam Processes
气体/超临界流体注射微/纳米层共挤发泡工艺
- 批准号:
RGPIN-2019-05778 - 财政年份:2019
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Development of high-performance multi-functional reversed-phase HPLC with the stationary phase containing gas and supercritical fluid
以气体和超临界流体为固定相的高性能多功能反相高效液相色谱仪的研制
- 批准号:
19H02741 - 财政年份:2019
- 资助金额:
$ 3.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)