Automorphic Representations
自守表示
基本信息
- 批准号:RGPIN-2015-06082
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Automorphic representations are abstract objects from mathematics that carry concrete information. The information is of great significance. It is believed to hold the keys for a grand unification of many areas of mathematics, and possibly also fundamental areas of physics. However the information is well hidden. It is embedded at the centre of what has become known as the Langlands program.***The heart of the Langlands program is a very deep yet quite explicit conjecture, known as the principle of functoriality, which represents a fundamental organizing principle for the data in automorphic representations. There has been significant progress on this conjecture in recent years. It comes as a biproduct of a classification of many automorphic representations through what is known as the theory of endoscopy. However, the complementary cases of functoriality are deeper, and have always been regarded as intractible. They fall into a domain Langlands has called "beyond endoscopy", in suggesting a remarkable but rather speculative strategy for attacking them in 2000.***I am proposing to work on general cases of functoriality, and in particular, Langlands' ideas in "beyond endoscopy". Taken as a whole, this problem includes some of the most difficult questions in mathematics. Success is by no means answered. However, any progress that can be made would have an enormous impact on many broad areas of mathematics. ***I will also work on extending the actual theory of endoscopy. This is a very large problem in its own right, but it is more accessible. It contains many interesting questions, which are a rich source of problems for graduate students and young mathematicians. Further progress in the theory of endoscopy should eventually lead to a classification of automorphic representations for a very wide class of groups.**
自守表示是数学中携带具体信息的抽象对象。这个信息意义重大。人们认为它掌握着许多数学领域以及物理学基本领域大统一的钥匙。但信息隐藏得很好。它被嵌入到后来被称为朗兰兹纲领的中心。朗兰兹纲领的核心是一个非常深刻而又非常明确的猜想,即函性原理,它代表了自守表示中数据的基本组织原则。近年来,这一猜想取得了重大进展。它是通过所谓的内窥镜理论对许多自守表示进行分类的双产品。然而,功能性的互补情况更深,一直被认为是棘手的。它们属于朗兰兹所谓的“超越内窥镜”的领域,在2000年提出了一个引人注目但相当投机的攻击策略。我建议研究功能性的一般情况,特别是朗兰兹在“超越内窥镜”中的思想。总的来说,这个问题包括了数学中最难的一些问题。成功是没有答案的。然而,任何可能取得的进展都将对数学的许多广泛领域产生巨大影响。* 我还将致力于扩展内窥镜的实际理论。这本身就是一个非常大的问题,但它更容易解决。它包含了许多有趣的问题,这是一个丰富的来源问题的研究生和年轻的数学家。内窥镜检查理论的进一步发展最终会导致一个非常广泛的类别的自守表示的分类。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur, James其他文献
Sigmoid-gluteal fistula: a rare complication of fistulating diverticular disease
- DOI:
10.1093/jscr/rjw237 - 发表时间:
2017-03-01 - 期刊:
- 影响因子:0.5
- 作者:
Chadwick, Thomas;Katti, Ashok;Arthur, James - 通讯作者:
Arthur, James
Character education in schools and the education of teachers
- DOI:
10.1080/03057240701194738 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:1.7
- 作者:
Revell, Lynn;Arthur, James - 通讯作者:
Arthur, James
The Routledge International Handbook of Religion and Values
劳特利奇国际宗教与价值观手册
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Arthur, James;Lovat, Terence - 通讯作者:
Lovat, Terence
Arthur, James的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur, James', 18)}}的其他基金
Beyond Endoscopy and the stable trace formula
超越内窥镜检查和稳定的痕量公式
- 批准号:
RGPIN-2020-04547 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Beyond Endoscopy and the stable trace formula
超越内窥镜检查和稳定的痕量公式
- 批准号:
RGPIN-2020-04547 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Beyond Endoscopy and the stable trace formula
超越内窥镜检查和稳定的痕量公式
- 批准号:
RGPIN-2020-04547 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Representations
自守表示
- 批准号:
RGPIN-2015-06082 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Representations
自守表示
- 批准号:
RGPIN-2015-06082 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Representations
自守表示
- 批准号:
RGPIN-2015-06082 - 财政年份:2016
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Representations
自守表示
- 批准号:
RGPIN-2015-06082 - 财政年份:2015
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Automorphic representations of quasiclassical groups
准经典群的自守表示
- 批准号:
3483-2010 - 财政年份:2014
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Automorphic representations of quasiclassical groups
准经典群的自守表示
- 批准号:
3483-2010 - 财政年份:2013
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Automorphic representations of quasiclassical groups
准经典群的自守表示
- 批准号:
3483-2010 - 财政年份:2012
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347095 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347097 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Representations of Kac-Moody Groups and Applications to Automorphic Forms
Kac-Moody 群的表示及其在自守形式中的应用
- 批准号:
RGPIN-2019-06112 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Congruences of automorphic forms and Galois representations
自守形式和伽罗瓦表示的同余
- 批准号:
2745671 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Studentship
Distribution of Hecke eigenvalues for automorphic representations
自守表示的 Hecke 特征值分布
- 批准号:
RGPIN-2021-03032 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
- 批准号:
2201314 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Continuing Grant
Automorphic Representations and L-Functions
自守表示和 L 函数
- 批准号:
2200890 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Representations of Kac-Moody Groups and Applications to Automorphic Forms
Kac-Moody 群的表示及其在自守形式中的应用
- 批准号:
RGPIN-2019-06112 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Distribution of Hecke eigenvalues for automorphic representations
自守表示的 Hecke 特征值分布
- 批准号:
DGECR-2021-00121 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Launch Supplement