New Routes from Topological Materials to Quantum Computing
从拓扑材料到量子计算的新路线
基本信息
- 批准号:RGPIN-2018-04380
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, concepts from topology have found remarkable applications to real materials at room temperature. There exists an entirely new class of “topological materials” which are semiconductors with robust metallic states on their surfaces. In the same way that a ball cannot be deformed into a donut without a drastic transformation, these topological materials cannot be stripped of their fascinating properties without a phase transition. Beyond such topological materials, theorists have predicted “fractionalized” topological phases which host emergent particles completely different from the original degrees of freedom. Such phases contain particles called anyons which are neither bosons nor fermions. These ingredients are essential for topological quantum computation, which involves moving (“braiding”) these anyons around each other to realize computational operations. Such nonlocal actions are robust against imperfections, making these systems a promising platform for quantum computinga fundamentally new technology with broad repercussions for science and society. ******However, a severe, persistent challenge that has limited the field is predicting new experimental systems realizing such fractionalized phases. My long-term research program will involve developing new routes to achieve such fractionalized systems by using existing topological materials as building blocks. In the proposed research, I will apply a fundamentally new technique that I recently developed; this innovative technique yields both microscopic models and concrete proposals for fractionalized phases in synthetic quantum systems such as ultracold atoms and superconducting platforms. In parallel, my research program will explore new techniques to manipulate objects called “Majorana modes” arising from superconducting topological materials. ******These new concrete roadmaps from topological materials to quantum computing will strengthen Canada's role in the rapidly growing fields of condensed matter theory, quantum information, and quantum computation. The fields of condensed matter and quantum information theory have become progressively intertwined in recent years, and this Discovery grant will draw heavily from both fields to make progress. Such an interdisciplinary program is very beneficial for training students, who will gain a well-rounded skill set and synthetic perspective after working in this initiative. The Discovery grant will thus play a critical role in both enabling progress on the important problem of realizing fractionalized phases and topological quantum computing platforms and providing students with essential research skills.
近年来,拓扑学的概念在室温下的真实的材料中得到了显著的应用。 存在一种全新的“拓扑材料”,它们是在其表面上具有稳健金属态的半导体。 就像一个球不可能在没有剧烈转变的情况下变形成甜甜圈一样,这些拓扑材料不可能在没有相变的情况下被剥夺其迷人的特性。 除了这些拓扑材料,理论家们还预测了“分形”拓扑相,其中包含了与原始自由度完全不同的涌现粒子。 这些相包含称为任意子的粒子,它们既不是玻色子也不是费米子。 这些成分对于拓扑量子计算是必不可少的,拓扑量子计算涉及将这些任意子相互移动(“编织”)以实现计算操作。 这种非局域行为对不完美性具有鲁棒性,使这些系统成为量子计算的一个有前途的平台,这是一项对科学和社会产生广泛影响的全新技术。 ** 然而,限制该领域的一个严峻而持久的挑战是预测实现这种细分阶段的新实验系统。 我的长期研究计划将涉及开发新的路线,通过使用现有的拓扑材料作为构建模块来实现这种细分系统。在拟议的研究中,我将应用我最近开发的一种全新技术;这种创新技术为合成量子系统(如超冷原子和超导平台)中的分数相产生了微观模型和具体建议。 与此同时,我的研究计划将探索新的技术来操纵从超导拓扑材料中产生的被称为“马约拉纳模式”的物体。 这些从拓扑材料到量子计算的新的具体路线图将加强加拿大在凝聚态理论,量子信息和量子计算等快速发展领域的作用。 近年来,凝聚态和量子信息理论的领域已经逐渐交织在一起,而这项发现资助将从这两个领域中获得大量资金,以取得进展。 这样一个跨学科的计划是非常有益的培训学生,谁将获得一个全面的技能和综合视角后,在这一举措的工作。 因此,发现补助金将在实现分数阶段和拓扑量子计算平台的重要问题上取得进展,并为学生提供基本的研究技能方面发挥关键作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hsieh, Timothy其他文献
Hsieh, Timothy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hsieh, Timothy', 18)}}的其他基金
New Routes from Topological Materials to Quantum Computing
从拓扑材料到量子计算的新路线
- 批准号:
RGPIN-2018-04380 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Routes from Topological Materials to Quantum Computing
从拓扑材料到量子计算的新路线
- 批准号:
RGPIN-2018-04380 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Routes from Topological Materials to Quantum Computing
从拓扑材料到量子计算的新路线
- 批准号:
RGPIN-2018-04380 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Routes from Topological Materials to Quantum Computing
从拓扑材料到量子计算的新路线
- 批准号:
RGPIN-2018-04380 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Routes from Topological Materials to Quantum Computing
从拓扑材料到量子计算的新路线
- 批准号:
DGECR-2018-00345 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Launch Supplement
相似海外基金
CO2 Routes Across Europe (COREU)
穿越欧洲的二氧化碳路线 (COREU)
- 批准号:
10111502 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
EU-Funded
Evolutionary routes to phenotypic convergence in vertebrates
脊椎动物表型趋同的进化途径
- 批准号:
NE/Z000149/1 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Research Grant
CO2 ROUTES ACROSS EUROPE (COREU)
穿越欧洲的二氧化碳路线 (COREU)
- 批准号:
10110613 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
EU-Funded
CAS: Solution Routes Towards Metastable Functional Chalcogenides
CAS:亚稳态功能硫属化物的解决方案
- 批准号:
2333388 - 财政年份:2024
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
PLEXUS: Philosophical, Logical, and Experimental routes to substructurality
PLEXUS:通往底层的哲学、逻辑和实验路线
- 批准号:
EP/X038246/1 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Research Grant
Characterising Transport Routes in Dual-phase Molten-salt Membranes for Carbon Dioxide Separation
表征二氧化碳分离双相熔盐膜中的传输路径
- 批准号:
2875396 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Studentship
CUSTOMIZED GAMES AND ROUTES FOR CULTURAL HERITAGE
文化遗产定制游戏和路线
- 批准号:
10066519 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
EU-Funded
New Routes to fluorocarbons using fluoroboranes
使用氟硼烷生产碳氟化合物的新途径
- 批准号:
EP/X021858/1 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Research Grant
Development of routes to new fluorine containing molecules utilising commodity chemicals
利用商品化学品开发新型含氟分子的路线
- 批准号:
2867685 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Studentship
A feasibility study of innovative mineral processing routes to accelerate the low-carbon production of cathode raw materials from North East Scotland for the UK’s automotive industry
创新矿物加工路线的可行性研究,以加速苏格兰东北部为英国汽车行业生产阴极原材料
- 批准号:
10079765 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
BEIS-Funded Programmes