Privacy Preserving synthesized data releasing via generative adversarial networks

通过生成对抗网络发布的隐私保护合成数据

基本信息

  • 批准号:
    RGPIN-2019-06119
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Privacy Preserving synthesized data releasing via generative adversarial networks******The recent Facebook privacy scandal involving a London-based data-mining firm on misusing Facebook information of tens of millions of users highlights again the privacy concern over collecting, storing, and using sensitive data for data analysis. The traditional data sanitization technique addresses privacy concerns by masking sensitive information in true data and releasing the masked version. This approach makes certain assumptions on what is sensitive information and how the data will be used. Often these information are not available, so excessive data sanitization is necessary, which destroys data utility for potential analyses. The objective of this proposed research is to investigate the alternative of releasing synthesized data generated from true data by preserving the distributional characteristics of true data, instead of releasing actual individuals' records. The key is how to preserve distributional characteristics and how to ensure that doing so does not disclose sensitive information about individuals. ******The recent development of Generative Adversarial Networks (GANs) in machine learning and deep neural networks opens up new possibilities to address the above problem. GANs are a system of two neural networks contesting with each other in a zero-sum game framework. The generative network learns to map from a latent space to a particular data distribution of interest, while the discriminative network discriminates between instances from the true data distribution and candidates produced by the generative network. Both networks improve their methods until the synthesized instances are indistinguishable from the genuine ones, i.e., preserve the distributional characteristics of true data. To address privacy concerns, previous works, mainly from image generation, added random noises to perturb the gradient during stochastic gradient descent in the training of GANs. Since the perturbed gradient adversely affects the convergence rate and the utility of solutions, only weak privacy settings were evaluated because of poor utility. The proposed research will investigate alternatives ways of adding noises that could better preserve both privacy and utility, and evaluate data utility in a broad range of domains. One application of special interests to us is releasing medical and healthcare data to researchers, thanks to our access to true data and expertise in this domain. The significance of this research is that the data holder does not have to be concerned with data privacy because no true data is released and the released data meets a strong privacy guarantee; on the other hand, the data analyst will get nearly the same result as if true data were analyzed. This work will contribute to the practice of privacy preservation and the encouragement of data sharing for the benefits of data analysis. *****
最近的Facebook隐私丑闻涉及一家总部位于伦敦的数据挖掘公司滥用数千万用户的Facebook信息,再次凸显了对收集,存储和使用敏感数据进行数据分析的隐私问题。传统的数据净化技术通过屏蔽真实数据中的敏感信息并释放屏蔽的版本来解决隐私问题。这种方法对什么是敏感信息以及如何使用数据做出了某些假设。这些信息通常不可用,因此需要进行过多的数据清理,这会破坏潜在分析的数据实用性。本研究的目的是探讨通过保留真实数据的分布特征来发布由真实数据生成的合成数据的替代方案,而不是发布实际的个人记录。关键是如何保持分布特征,以及如何确保这样做不会泄露有关个人的敏感信息。** 机器学习和深度神经网络中生成对抗网络(GAN)的最新发展为解决上述问题开辟了新的可能性。GAN是两个神经网络在零和游戏框架中相互竞争的系统。生成网络学习从潜在空间映射到感兴趣的特定数据分布,而判别网络区分来自真实数据分布的实例和由生成网络产生的候选者。两个网络都改进了它们的方法,直到合成的实例与真实的实例无法区分,即,保持真实数据的分布特征。为了解决隐私问题,以前的工作,主要是从图像生成,在GAN训练的随机梯度下降过程中添加随机噪声来扰动梯度。由于扰动梯度对收敛速度和解的效用产生不利影响,因此由于效用差,仅对弱隐私设置进行评估。拟议的研究将调查添加噪声的替代方法,这些方法可以更好地保护隐私和实用性,并在广泛的领域评估数据实用性。我们特别感兴趣的一个应用是向研究人员发布医疗和医疗保健数据,这要归功于我们在该领域的真实数据和专业知识。这项研究的意义在于,数据保持器不必担心数据隐私,因为没有真实的数据被发布,发布的数据符合强有力的隐私保证;另一方面,数据分析师将获得与分析真实数据几乎相同的结果。这项工作将有助于隐私保护的实践和鼓励数据共享,以利于数据分析。*****

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Ke其他文献

RIA-CSM: A Real-Time Impact-Aware Correlative Scan Matching Using Heterogeneous Multi-Core SoC
  • DOI:
    10.1109/jsen.2022.3146283
  • 发表时间:
    2022-03-15
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Bao, Minjie;Wang, Ke;Fan, Zhendong
  • 通讯作者:
    Fan, Zhendong
Effects of Dispersal for a Logistic Growth Population in Random Environments
随机环境中逻辑增长种群的扩散效应
  • DOI:
    10.1155/2013/912579
  • 发表时间:
    2013-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zou, Xiaoling;Fan, Dejun;Wang, Ke
  • 通讯作者:
    Wang, Ke
Nano-Drug Delivery Systems Based on Different Targeting Mechanisms in the Targeted Therapy of Colorectal Cancer.
  • DOI:
    10.3390/molecules27092981
  • 发表时间:
    2022-05-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Wang, Ke;Shen, Ruoyu;Meng, Tingting;Hu, Fuqiang;Yuan, Hong
  • 通讯作者:
    Yuan, Hong
Multi-omics characterization reveals the pathogenesis of liver focal nodular hyperplasia.
  • DOI:
    10.1016/j.isci.2022.104921
  • 发表时间:
    2022-09-16
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Liu, Yuming;Zhang, Jinmai;Wang, Zhuo;Ma, Jiaqiang;Wang, Ke;Rao, Dongning;Zhang, Mao;Lin, Youpei;Wu, Yingcheng;Yang, Zijian;Dong, Liangqing;Ding, Zhenbin;Zhang, Xiaoming;Fan, Jia;Shi, Yongyong;Gao, Qiang
  • 通讯作者:
    Gao, Qiang
Common variants in KCNN3 are associated with lone atrial fibrillation.
  • DOI:
    10.1038/ng.537
  • 发表时间:
    2010-03
  • 期刊:
  • 影响因子:
    30.8
  • 作者:
    Ellinor, Patrick T.;Lunetta, Kathryn L.;Glazer, Nicole L.;Pfeufer, Arne;Alonso, Alvaro;Chung, Mina K.;Sinner, Moritz F.;de Bakker, Paul I. W.;Mueller, Martina;Lubitz, Steven A.;Fox, Ervin;Darbar, Dawood;Smith, Nicholas L.;Smith, Jonathan D.;Schnabel, Renate B.;Soliman, Elsayed Z.;Rice, Kenneth M.;Van Wagoner, David R.;Beckmann, Britt-M;van Noord, Charlotte;Wang, Ke;Ehret, Georg B.;Rotter, Jerome I.;Hazen, Stanley L.;Steinbeck, Gerhard;Smith, Albert V.;Launer, Lenore J.;Harris, Tamara B.;Makino, Seiko;Nelis, Mari;Milan, David J.;Perz, Siegfried;Esko, Tonu;Koettgen, Anna;Moebus, Susanne;Newton-Cheh, Christopher;Li, Man;Moehlenkamp, Stefan;Wang, Thomas J.;Kao, W. H. Linda;Vasan, Ramachandran S.;Noethen, Markus M.;MacRae, Calum A.;Stricker, Bruno H. Ch;Hofman, Albert;Uitterlinden, Andre G.;Levy, Daniel;Boerwinkle, Eric;Metspalu, Andres;Topol, Eric J.;Chakravarti, Aravinda;Gudnason, Vilmundur;Psaty, Bruce M.;Roden, Dan M.;Meitinger, Thomas;Wichmann, H-Erich;Witteman, Jacqueline C. M.;Barnard, John;Arking, Dan E.;Benjamin, Emelia J.;Heckbert, Susan R.;Kaeaeb, Stefan
  • 通讯作者:
    Kaeaeb, Stefan

Wang, Ke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Ke', 18)}}的其他基金

Privacy Preserving synthesized data releasing via generative adversarial networks
通过生成对抗网络发布的隐私保护合成数据
  • 批准号:
    RGPIN-2019-06119
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Privacy Preserving synthesized data releasing via generative adversarial networks
通过生成对抗网络发布的隐私保护合成数据
  • 批准号:
    RGPIN-2019-06119
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Privacy Preserving synthesized data releasing via generative adversarial networks
通过生成对抗网络发布的隐私保护合成数据
  • 批准号:
    RGPIN-2019-06119
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Privacy Preserving synthesized data releasing via generative adversarial networks
通过生成对抗网络发布的隐私保护合成数据
  • 批准号:
    RGPAS-2019-00081
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Privacy Preserving synthesized data releasing via generative adversarial networks
通过生成对抗网络发布的隐私保护合成数据
  • 批准号:
    RGPAS-2019-00081
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Secure Query Answering for Outsourced Databases in Cloud Computing
云计算中外包数据库的安全查询应答
  • 批准号:
    RGPIN-2014-06027
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Secure Query Answering for Outsourced Databases in Cloud Computing
云计算中外包数据库的安全查询应答
  • 批准号:
    RGPIN-2014-06027
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Secure Query Answering for Outsourced Databases in Cloud Computing
云计算中外包数据库的安全查询应答
  • 批准号:
    RGPIN-2014-06027
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Secure Query Answering for Outsourced Databases in Cloud Computing
云计算中外包数据库的安全查询应答
  • 批准号:
    RGPIN-2014-06027
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Prediction of distribution feeder outages caused by storms
风暴造成的配电馈线停运预测
  • 批准号:
    445210-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
  • 批准号:
    EP/Y033248/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Z000262/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
Preserving dark skies with neuromorphic camera technology
利用神经形态相机技术保护黑暗天空
  • 批准号:
    ST/Y50998X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了