Biophysical elucidation of ion channel complex function

离子通道复合体功能的生物物理阐明

基本信息

  • 批准号:
    RGPIN-2016-05422
  • 负责人:
  • 金额:
    $ 3.93万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Overall program rationale and focus: ***Ion channels regulate essential aspects of biological function by enabling critical processes to occur that can be as diverse as electrical signaling in the brain or heart and cell volume control. The molecular events underlying voltage-dependent gating that lead to the conducting or open state of voltage-activated ion channels, and subsequently to their inactivation and closure are still poorly defined in many situations.***Our long-term objective is to understand better the biophysical mechanisms of normal gating in potassium (IKr, IKs) and sodium (INa) ion channels, and this will be achieved by research addressing four related shorter-term goals:******#1) The kinetic structure of IKr voltage gating: We hypothesize that ion channel voltage sensor domain internal charge interactions control delayed Kv11.1 ion channel activation/deactivation and voltage sensor domain-turret rapid inactivation. Innovative gating current analysis, methane thio-sulphonate exposure studies, and genetic incorporation of fluorescent probes will be used to precisely map inter-subunit movements.******#2 and #3) Real-time studies of the structural basis of INa inactivation and IKs inter-subunit interactions: We hypothesize that a) transient molecular conformations of Nav1.5 domains define stability of inactivation, b) specific and unique physical associations between KCNQ1 and KCNE1-5 in exterior clefts confer gating properties, and c) control subunit stoichiometry. Genetically-encoded photo-activated bridges, MS analysis and whole cell and single channel patch recording will be used to map these interactions.******#4) Molecular mechanisms of drug effects on IKr kinetics: We hypothesize that a) cation-Pi interactions via S6 amino acid residues of hERG are critical for pore block, and fluorinated UAA series at F656 and Y652 will be used to examine ring charge distribution and determinants of block.******Training: My laboratory and the research group of faculty create a rigorous and diverse learning environment through advanced technical experimentation, graduate courses, lab meetings, journal clubs, and presentation at scientific meetings. Trainees acquire necessary experimental, presentation and writing skills to achieve independent and professional career goals, and give rise to new leaders in this field of biophysics.******Significant impact: Our in-depth studies of IKr, IKs and INa gating will uncover molecular events underlying opening and closing of these biological gatekeepers, which in turn will improve our understanding of mechanisms that control cell electrical activity. This knowledge will be disseminated via publication in high-impact journals, invited conference, and additionally, this work is anticipated to lead to further NSERC-partnered opportunities, e.g. IRAP to more widely utilize information and generate further economic opportunities.**
总体计划的基本原理和重点:* 离子通道通过使关键过程发生来调节生物功能的基本方面,这些过程可以与大脑或心脏中的电信号和细胞体积控制一样多样化。电压依赖性门控导致电压激活离子通道的传导或开放状态,并随后导致其失活和关闭的分子事件在许多情况下仍然定义不清。我们的长期目标是更好地了解钾离子正常门控的生物物理机制,(IKr,IKs)和钠(INa)离子通道,这将通过解决四个相关的短期目标的研究来实现:*#1)IKr电压门控的动力学结构:我们假设离子通道电压传感器域内部电荷相互作用控制延迟的Kv11.1离子通道激活/失活和电压传感器域-炮塔快速失活。创新的门控电流分析、甲烷硫代磺酸盐暴露研究和荧光探针的遗传掺入将用于精确绘制亚基间运动。2和#3)INa失活和IKs亚基间相互作用的结构基础的实时研究:我们假设a)Nav1.5结构域的瞬时分子构象定义了失活的稳定性,B)外部裂缝中KCNQ 1和KCNE 1 -5之间的特异性和独特的物理关联赋予门控特性,以及c)控制亚基化学计量。遗传编码的光激活桥、MS分析和全细胞和单通道补丁记录将用于绘制这些相互作用。4)药物对IKr动力学影响的分子机制:我们假设a)通过hERG的S6氨基酸残基的阳离子-Pi相互作用对于孔阻断至关重要,F656和Y 652处的氟化UAA系列将用于检查环电荷分布和阻断的决定因素。**培训内容:我的实验室和教师的研究小组通过先进的技术实验,研究生课程,实验室会议,期刊俱乐部和科学会议上的演讲创造了一个严格而多样化的学习环境。学员获得必要的实验,演讲和写作技能,以实现独立和专业的职业目标,并在生物物理学领域产生新的领导者。重大影响:我们对IKr、IKs和INa门控的深入研究将揭示这些生物学看门人打开和关闭的分子事件,这反过来将提高我们对控制细胞电活动机制的理解。这一知识将通过在高影响力期刊上发表文章、应邀参加会议来传播,此外,预计这项工作将带来更多与国家能源和环境研究中心合作的机会,例如,IRAP更广泛地利用信息并创造更多的经济机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fedida, David其他文献

Localization of Kv1.5 channels in rat and canine myocyte sarcolemma
  • DOI:
    10.1016/j.febslet.2006.09.069
  • 发表时间:
    2006-11-13
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Eldstrom, Jodene;Van Wagoner, David R.;Fedida, David
  • 通讯作者:
    Fedida, David
The role of late I and antiarrhythmic drugs in EAD formation and termination in Purkinje fibers.
Functional characterization of the LQT2-causing mutation R582C and the associated voltage-dependent fluorescence signal
  • DOI:
    10.1016/j.hrthm.2011.02.035
  • 发表时间:
    2011-08-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Fougere, Robert R.;Es-Salah-Lamoureux, Zeineb;Fedida, David
  • 通讯作者:
    Fedida, David
Rapid induction of P/C-type inactivation is the mechanism for acid-induced K+ current inhibition.
  • DOI:
    10.1085/jgp.20028760
  • 发表时间:
    2003-03
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Zhang, Shetuan;Kurata, Harley T;Kehl, Steven J;Fedida, David
  • 通讯作者:
    Fedida, David
RSD1235 blocks late INa and suppresses early afterdepolarizations and torsades de pointes induced by class III agents
  • DOI:
    10.1016/j.cardiores.2006.01.026
  • 发表时间:
    2006-06-01
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Orth, Peter M. R.;Hesketh, J. Christian;Fedida, David
  • 通讯作者:
    Fedida, David

Fedida, David的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fedida, David', 18)}}的其他基金

Structures of ion channel complexes
离子通道复合物的结构
  • 批准号:
    RGPIN-2022-03021
  • 财政年份:
    2022
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual
Biophysical elucidation of ion channel complex function
离子通道复合体功能的生物物理阐明
  • 批准号:
    RGPIN-2016-05422
  • 财政年份:
    2021
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual
Biophysical elucidation of ion channel complex function
离子通道复合体功能的生物物理阐明
  • 批准号:
    RGPIN-2016-05422
  • 财政年份:
    2020
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual
Novel 3D bioprinted human cardiac tissue models for drug safety and efficacy testing
用于药物安全性和功效测试的新型 3D 生物打印人体心脏组织模型
  • 批准号:
    523528-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Collaborative Health Research Projects
Microelectrode array (MEA) technology for functional assessment of novel 3D bioprinted human cardiac tissue models.
微电极阵列 (MEA) 技术用于新型 3D 生物打印人体心脏组织模型的功能评估。
  • 批准号:
    RTI-2019-00211
  • 财政年份:
    2018
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Research Tools and Instruments
Novel 3D bioprinted human cardiac tissue models for drug safety and efficacy testing
用于药物安全性和功效测试的新型 3D 生物打印人体心脏组织模型
  • 批准号:
    523528-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Collaborative Health Research Projects
Biophysical elucidation of ion channel complex function
离子通道复合体功能的生物物理阐明
  • 批准号:
    RGPIN-2016-05422
  • 财政年份:
    2018
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual
3D bioprinted cardiac tissue models
3D生物打印心脏组织模型
  • 批准号:
    520967-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Engage Grants Program
Biophysical elucidation of ion channel complex function
离子通道复合体功能的生物物理阐明
  • 批准号:
    RGPIN-2016-05422
  • 财政年份:
    2017
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual
Biophysical elucidation of ion channel complex function
离子通道复合体功能的生物物理阐明
  • 批准号:
    RGPIN-2016-05422
  • 财政年份:
    2016
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Elucidation of the molecular mechanisms of ion selectivity and sensing of Mg2+ transporters responsible for the control of the cytoplasmic Mg2+ concentration
阐明负责控制细胞质 Mg2 浓度的 Mg2 转运蛋白的离子选择性和传感的分子机制
  • 批准号:
    23H02110
  • 财政年份:
    2023
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Postdoctoral Fellowship: MPS-Ascend: Elucidation of Peptide Scrambling in Collision Induced Dissociation: Energetic and Mechanistic Analysis via Guided Ion Beam Mass Spectrometry
博士后奖学金:MPS-Ascend:阐明碰撞诱导解离中的肽加扰:通过引导离子束质谱进行能量和机理分析
  • 批准号:
    2316669
  • 财政年份:
    2023
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Fellowship Award
Elucidation of stomatal movement mechanism and creation of plant growth regulators using ion channel inhibitors
利用离子通道抑制剂阐明气孔运动机制并创建植物生长调节剂
  • 批准号:
    23KJ0101
  • 财政年份:
    2023
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of surface erosion on spacecraft due to backflow ions in operation of ion thruster adopting spacecraft charging analysis
采用航天器充电分析阐明离子推进器运行时回流离子对航天器表面的侵蚀
  • 批准号:
    22H01688
  • 财政年份:
    2022
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of the role of low-energy electrons in biomolecular damage in liquid water by ion beams
阐明低能电子在离子束对液态水中生物分子损伤中的作用
  • 批准号:
    22K03549
  • 财政年份:
    2022
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Biophysical elucidation of ion channel complex function
离子通道复合体功能的生物物理阐明
  • 批准号:
    RGPIN-2016-05422
  • 财政年份:
    2021
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Discovery Grants Program - Individual
Elucidation of the mechanism of laser-driven ion acceleration using solid state nuclear track detectors
使用固态核径迹探测器阐明激光驱动离子加速的机制
  • 批准号:
    21K14563
  • 财政年份:
    2021
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanical response mechanism of ion conduction using a hierarchical structure
使用分层结构阐明离子传导的机械响应机制
  • 批准号:
    21H01997
  • 财政年份:
    2021
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of a Novel Ion Heating Mechanism Utilizing the Characteristics of Whistler Waves and Its Application Development
利用惠斯勒波特性的新型离子加热机制的阐明及其应用开发
  • 批准号:
    21K03500
  • 财政年份:
    2021
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the mechanism of Fe ion regulation of cancer microenvironment by tumor vascular endothelial cells
阐明肿瘤血管内皮细胞铁离子调节肿瘤微环境的机制
  • 批准号:
    21K15531
  • 财政年份:
    2021
  • 资助金额:
    $ 3.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了