Machine Intelligence and Big Data Analytics for 5G Networks and Beyond
适用于 5G 网络及其他网络的机器智能和大数据分析
基本信息
- 批准号:521432-2018
- 负责人:
- 金额:$ 16.03万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Strategic Projects - Group
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
5G, the next generation mobile network, is anticipated to transform modern societies by providing an ultra-reliable, high-speed communications infrastructure that will connect more than 30 billion devices by 2020. As the complexity of such future networks will be unprecedented compared to earlier networks, their success is largely dependent on intelligent network management tools that can control their operation and reduce costs. In this project, we will develop a smart management solution suite for future 5G networks based on innovative machine learning and big data analytics techniques. The solutions will enable networks to be self-diagnosing and self-organizing and will enhance network capacity and user service while reducing capital and operating expenditures. The research will be carried out by a multidisciplinary team led by experts in mobile communications, machine learning and big data analytics, and navigation and positioning. Three PhD and four MSc students and two postdoctoral fellows will receive comprehensive training in applied machine intelligence and analytics, which are key assets for success in today's job market. The project will also be implemented and evaluated following the best industrial practices and rigor, facilitated by our industrial partner, Ericsson. Ericsson is a global leader in communication technologies, carrying 40% of the world's mobile traffic and employing approximately 23,700 employees in research and development activities. Our research will facilitate the adoption of sophisticated analytics-driven solutions for future 5G networks, and the lessons learned will provide valuable guidance for the design of networks beyond 5G as well. It will, therefore, position the Canadian telecommunications sector as a driver and leader in innovation, attracting further investments in research and development.
5G是下一代移动的网络,预计将通过提供超可靠的高速通信基础设施来改变现代社会,到2020年将连接超过300亿台设备。由于这种未来网络的复杂性与早期网络相比将是前所未有的,它们的成功在很大程度上取决于能够控制其操作并降低成本的智能网络管理工具。在这个项目中,我们将基于创新的机器学习和大数据分析技术,为未来的5G网络开发智能管理解决方案套件。这些解决方案将使网络能够自我诊断和自我组织,并将提高网络容量和用户服务,同时减少资本和运营支出。这项研究将由一个多学科团队进行,该团队由移动的通信、机器学习和大数据分析以及导航和定位方面的专家领导。三名博士生和四名硕士生以及两名博士后研究员将接受应用机器智能和分析方面的全面培训,这是在当今就业市场取得成功的关键资产。该项目还将在我们的工业合作伙伴爱立信的协助下,按照最佳工业实践和严格性进行实施和评估。爱立信是通信技术领域的全球领导者,承载着全球40%的移动的流量,拥有约23,700名员工从事研发活动。我们的研究将促进未来5G网络采用复杂的分析驱动的解决方案,所吸取的经验教训也将为5G之后的网络设计提供宝贵的指导。因此,它将把加拿大电信部门定位为创新的驱动力和领导者,吸引更多的研发投资。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hassanein, Hossam其他文献
Uplink Scheduling in LTE and LTE-Advanced: Tutorial, Survey and Evaluation Framework
- DOI:
10.1109/surv.2013.1127.00161 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:35.6
- 作者:
Abu-Ali, Najah;Taha, Abd-Elhamid M.;Hassanein, Hossam - 通讯作者:
Hassanein, Hossam
Placement of multiple mobile data collectors in wireless sensor networks
- DOI:
10.1016/j.adhoc.2009.08.007 - 发表时间:
2010-06-01 - 期刊:
- 影响因子:4.8
- 作者:
Alsalih, Waleed;Hassanein, Hossam;Akl, Selim - 通讯作者:
Akl, Selim
Placement of multiple mobile data collectors in underwater acoustic sensor networks
- DOI:
10.1002/wcm.656 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:0
- 作者:
Alsalih, Waleed;Hassanein, Hossam;Akl, Selim - 通讯作者:
Akl, Selim
Hassanein, Hossam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hassanein, Hossam', 18)}}的其他基金
Collaborative Service Provisioning at the Edge in 5G Wireless Networks
5G 无线网络边缘的协作服务配置
- 批准号:
RGPIN-2019-05667 - 财政年份:2022
- 资助金额:
$ 16.03万 - 项目类别:
Discovery Grants Program - Individual
A Framework for Democratized Edge Computing and Intelligence
民主化边缘计算和智能的框架
- 批准号:
549919-2020 - 财政年份:2021
- 资助金额:
$ 16.03万 - 项目类别:
Alliance Grants
Collaborative Service Provisioning at the Edge in 5G Wireless Networks
5G 无线网络边缘的协作服务配置
- 批准号:
RGPIN-2019-05667 - 财政年份:2021
- 资助金额:
$ 16.03万 - 项目类别:
Discovery Grants Program - Individual
Machine Intelligence and Big Data Analytics for 5G Networks and Beyond
适用于 5G 网络及其他网络的机器智能和大数据分析
- 批准号:
521432-2018 - 财政年份:2020
- 资助金额:
$ 16.03万 - 项目类别:
Strategic Projects - Group
Collaborative Service Provisioning at the Edge in 5G Wireless Networks
5G 无线网络边缘的协作服务配置
- 批准号:
RGPIN-2019-05667 - 财政年份:2020
- 资助金额:
$ 16.03万 - 项目类别:
Discovery Grants Program - Individual
A Framework for Democratized Edge Computing and Intelligence
民主化边缘计算和智能的框架
- 批准号:
549919-2020 - 财政年份:2020
- 资助金额:
$ 16.03万 - 项目类别:
Alliance Grants
Collaborative Service Provisioning at the Edge in 5G Wireless Networks
5G 无线网络边缘的协作服务配置
- 批准号:
RGPIN-2019-05667 - 财政年份:2019
- 资助金额:
$ 16.03万 - 项目类别:
Discovery Grants Program - Individual
Machine Intelligence and Big Data Analytics for 5G Networks and Beyond**
5G 网络及其他网络的机器智能和大数据分析**
- 批准号:
521432-2018 - 财政年份:2018
- 资助金额:
$ 16.03万 - 项目类别:
Strategic Projects - Group
Ubiquitous Global Sensing
无处不在的全球感知
- 批准号:
RGPIN-2014-06587 - 财政年份:2018
- 资助金额:
$ 16.03万 - 项目类别:
Discovery Grants Program - Individual
Ubiquitous Global Sensing
无处不在的全球感知
- 批准号:
RGPIN-2014-06587 - 财政年份:2017
- 资助金额:
$ 16.03万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 16.03万 - 项目类别:
Research Grant
International Joint Research on Seismological Big Data Analysis Techniques Using Artificial Intelligence
人工智能地震大数据分析技术国际联合研究
- 批准号:
23KK0181 - 财政年份:2023
- 资助金额:
$ 16.03万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Fingerprinting and Big Data Security Analytics for the Scalable Generation of Cyber Threat Intelligence
用于可扩展生成网络威胁情报的指纹识别和大数据安全分析
- 批准号:
RGPIN-2017-06650 - 财政年份:2022
- 资助金额:
$ 16.03万 - 项目类别:
Discovery Grants Program - Individual
Finding rare objects with artificial intelligence and big data from Subaru Telescope
利用斯巴鲁望远镜的人工智能和大数据寻找稀有物体
- 批准号:
22K14078 - 财政年份:2022
- 资助金额:
$ 16.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
BKWai- turning big data into advanced engineering intelligence
BKWai-将大数据转化为先进的工程智能
- 批准号:
10029960 - 财政年份:2022
- 资助金额:
$ 16.03万 - 项目类别:
Collaborative R&D
Integrating artificial intelligence, operations research, and big data analytics for decision and risk analysis
集成人工智能、运筹学和大数据分析进行决策和风险分析
- 批准号:
RGPIN-2018-05988 - 财政年份:2022
- 资助金额:
$ 16.03万 - 项目类别:
Discovery Grants Program - Individual
Development of Housing Environment Assessment Methods Using Diverse Big Data and Artificial Intelligence for the Formation of Sustainable Residential Areas
利用多样化大数据和人工智能开发住房环境评估方法,形成可持续居住区
- 批准号:
22K04490 - 财政年份:2022
- 资助金额:
$ 16.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating artificial intelligence, operations research, and big data analytics for decision and risk analysis
集成人工智能、运筹学和大数据分析进行决策和风险分析
- 批准号:
RGPIN-2018-05988 - 财政年份:2021
- 资助金额:
$ 16.03万 - 项目类别:
Discovery Grants Program - Individual
Glioblastoma Multiforme Patient Stratification through Novel integration of Artificial Intelligence, Big Data and Phenotypic Screening
通过人工智能、大数据和表型筛选的新颖整合对多形性胶质母细胞瘤患者进行分层
- 批准号:
89370 - 财政年份:2021
- 资助金额:
$ 16.03万 - 项目类别:
Collaborative R&D
Holistic Principal Tunnel-Sewer Survey System (HS3) using Unmanned Aerial vehicle and Artificial Intelligence+Big Data
使用无人机和人工智能大数据的整体主要隧道-下水道调查系统(HS3)
- 批准号:
10004446 - 财政年份:2021
- 资助金额:
$ 16.03万 - 项目类别:
Collaborative R&D