Quickest change detection, statistical learning and nonlinear filtering of jet engine data

喷气发动机数据的最快变化检测、统计学习和非线性过滤

基本信息

  • 批准号:
    543433-2019
  • 负责人:
  • 金额:
    $ 5.83万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Modern jet engines are some of the most expensive components on an aircraft and are engineered to be extremely reliable at great cost (up to $25 million per engine). Yet they can still experience unexpected catastrophic failure, resulting in tragedy and loss of life. In order to monitor engine health and performance, each engine is equipped with about 100 sensors that measure engine performance parameters, from pressure and temperature of the engine gas path to vibration of the rotating components. The goals of the proposed collaborative research are to develop novel mathematical and statistical methods that exploit new sensing capabilities on engines for (i) constructing new anomaly-detection schemes and quickest-change detection algorithms; and (ii) discovering instability limits, thus preventing damage to engine components and lengthening their life-span. The research proposed here uses both model-based and data-driven theories to develop efficient numerical algorithms for quickest change detection, statistical learning and nonlinear filtering targeted at our specific problem. Theme 1, the proposed quickest-change detection, will be a vital procedure for engine performance monitoring. Once a change in an engine state has occurred, that change must be detected as soon as possible, while minimizing false detections. Theme 2 of the proposal focuses on the data-driven methods appropriate for data generated by jet engines. When no explicit dynamical model is available, system knowledge boils down to real-time measurements, possibly complemented by process history. Advances made in collaboration with the industry partner, TECSIS Corporation, will have a lasting impact on the Prognosis and Health Management (PHM) techniques for detecting abrupt changes or anomalies in gas turbine engines. The proposed data-centric methods will benefit the aerospace industry at large as well as open new research perspectives and domains that rely heavily on measurements for system monitoring and control.
现代喷气发动机是飞机上最昂贵的部件之一,其设计非常可靠,成本很高(每台发动机高达2500万美元)。然而,它们仍然可能经历意想不到的灾难性故障,导致悲剧和生命损失。为了监测发动机的健康状况和性能,每台发动机都配备了大约100个传感器,用于测量发动机性能参数,从发动机气路的压力和温度到旋转部件的振动。拟议的合作研究的目标是开发新的数学和统计方法,利用发动机的新传感能力(i)构建新的异常检测方案和快速变化检测算法;(ii)发现不稳定极限,从而防止发动机部件损坏并延长其寿命。这里提出的研究使用基于模型和数据驱动的理论来开发高效的数值算法,以针对我们的特定问题进行最快的变化检测,统计学习和非线性滤波。 主题1,建议的快速变化检测,将是一个重要的程序,发动机性能监控。一旦发动机状态发生变化,必须尽快检测到该变化,同时最大限度地减少错误检测。该提案的主题2侧重于适用于喷气发动机产生的数据的数据驱动方法。当没有明确的动态模型可用时,系统知识归结为实时测量,可能由过程历史补充。与行业合作伙伴TECSIS公司合作取得的进展将对用于检测燃气涡轮机发动机突变或异常的预测和健康管理(PHM)技术产生持久影响。所提出的以数据为中心的方法将使整个航空航天工业受益,并开辟新的研究视角和领域,这些领域严重依赖于系统监测和控制的测量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Namachchivaya, NavaratnamSri其他文献

Namachchivaya, NavaratnamSri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Namachchivaya, NavaratnamSri', 18)}}的其他基金

Development of Data-driven Decision Support System using Deep Learning Techniques
利用深度学习技术开发数据驱动的决策支持系统
  • 批准号:
    568573-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 5.83万
  • 项目类别:
    Alliance Grants
Quickest change detection, statistical learning and nonlinear filtering of jet engine data
喷气发动机数据的最快变化检测、统计学习和非线性过滤
  • 批准号:
    543433-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 5.83万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
  • 批准号:
    19ZR1415200
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
美洲大蠊药材养殖及加工过程中化学成分动态变化与生物活性的相关性研究
  • 批准号:
    81060329
  • 批准年份:
    2010
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目
用多重假设检验方法来研究方差变点问题
  • 批准号:
    10901010
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334898
  • 财政年份:
    2024
  • 资助金额:
    $ 5.83万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334897
  • 财政年份:
    2024
  • 资助金额:
    $ 5.83万
  • 项目类别:
    Standard Grant
Advancing detection and understanding of anomalous ecological change
推进对异常生态变化的检测和理解
  • 批准号:
    DE240100398
  • 财政年份:
    2024
  • 资助金额:
    $ 5.83万
  • 项目类别:
    Discovery Early Career Researcher Award
Optimizing osteoporosis diagnosis through opportunistic computed tomography: developing an implementation strategy for early detection and intervention.
通过机会性计算机断层扫描优化骨质疏松症诊断:制定早期检测和干预的实施策略。
  • 批准号:
    484646
  • 财政年份:
    2023
  • 资助金额:
    $ 5.83万
  • 项目类别:
    Fellowship Programs
Investigating Enlarged Perivascular Spaces as a Neuroimaging Biomarker of Cerebral Small Vessel Disease
研究扩大的血管周围空间作为脑小血管疾病的神经影像生物标志物
  • 批准号:
    10674098
  • 财政年份:
    2023
  • 资助金额:
    $ 5.83万
  • 项目类别:
Joint Estimate Diffusion Imaging (JEDI) for improved Tissue Characterization and Neural Connectivity in Aging and Alzheimer's Disease
联合估计扩散成像 (JEDI) 可改善衰老和阿尔茨海默病的组织表征和神经连接
  • 批准号:
    10662911
  • 财政年份:
    2023
  • 资助金额:
    $ 5.83万
  • 项目类别:
Impact of TBI and Cognitive Decline on Alzheimer's Disease Brain-Derived Exosome Cargo
TBI 和认知能力下降对阿尔茨海默病脑源性外泌体货物的影响
  • 批准号:
    10662883
  • 财政年份:
    2023
  • 资助金额:
    $ 5.83万
  • 项目类别:
Shifting paradigms to emerging toxins in freshwater cyanobacterial blooms
淡水蓝藻水华中新出现的毒素的范式转变
  • 批准号:
    10912318
  • 财政年份:
    2023
  • 资助金额:
    $ 5.83万
  • 项目类别:
Protecting children's health by applying novel approaches to assess urban and rural drinking water
应用新方法评估城乡饮用水,保护儿童健康
  • 批准号:
    10724209
  • 财政年份:
    2023
  • 资助金额:
    $ 5.83万
  • 项目类别:
Relaxivity Contrast Imaging as Biomarker of Muscle Degeneration in ALS
弛豫对比成像作为 ALS 肌肉退化的生物标志物
  • 批准号:
    10783525
  • 财政年份:
    2023
  • 资助金额:
    $ 5.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了