Development of Data-driven Decision Support System using Deep Learning Techniques
利用深度学习技术开发数据驱动的决策支持系统
基本信息
- 批准号:568573-2021
- 负责人:
- 金额:$ 7.29万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is motivated by the need to develop a data-driven decision support system (DDSS) framework that can be used in two application areas, namely, prognostics and health management (PHM) of aerospace systems, and forest management services. The main goal of this collaborative research is to develop a decision support framework that uses advanced deep learning (DL) based algorithms to perform data processing, change/anomaly detection, classification, predictive analytics, and decision support in a sequential order to aid decision makers in the applications areas of PHM and forest management. There are two industrial partners involved in this project, Tecsis Corporation and Hegyi Geomatics Inc. Tecsis will use the proposed framework for their PHM applications to provide users with the ability to perceive the health state of a component or subsystem, and to predict its future maintenance policies. Hegyi will adopt the proposed framework for their forest management applications to acquire and analyze forest-based information to assist managers in optimizing the overall benefits of forest resources.In this proposal we have three research themes. In Theme 1, enhancements to multi-class classification will be investigated using hybrid formulations various DL methods by exploiting the strengths each method. Further, some of the challenges associated with DL methods will be addressed by exploring transfer learning, domain adaptation, and data augmentation techniques. Theme 2 will focus on the remaining useful life prediction and biomass estimation by exploring the strengths various DL methods in handling time series data and imagery data. To further improve the performance of these DL methods in terms of accuracy and robustness, domain-informed DL methods, ensemble learning techniques, and uncertainty quantification methods will be investigated. Theme 3 will focus on the development of decision support module based on the accumulation and understanding information gain through classification and predictive modeling methods supported by deep learning techniques included in the proposed DDSS framework. The effectiveness and advantages of the proposed DDSS framework will be demonstrated using the data sets provided by Tecsis and Hegyi for their respective applications. Three Master's, four undergraduates, one PhD and one PDF will be trained in this project in the upcoming areas of data analytics and deep learning. By adopting the results from this research, Tecsis and Hegyi expect to expand their R&D services and cliental base in their respective sectors.
这一建议的动机是需要开发一个数据驱动的决策支持系统(DDSS)框架,可用于两个应用领域,即,航空航天系统的性能和健康管理(PHM),和森林管理服务。这项合作研究的主要目标是开发一个决策支持框架,该框架使用基于高级深度学习(DL)的算法按顺序执行数据处理、变化/异常检测、分类、预测分析和决策支持,以帮助决策者PHM和森林管理应用领域。有两个工业合作伙伴参与了这个项目,Tecsis公司和Hegyi Geomatics公司。Tecsis将在其PHM应用程序中使用拟议的框架,为用户提供感知组件或子系统健康状态的能力,并预测其未来的维护策略。Hegyi将采用他们的森林管理应用程序的建议框架,以获取和分析基于森林的信息,以帮助管理人员优化森林资源的整体效益。在这个建议中,我们有三个研究主题。在主题1中,将通过利用各种DL方法的优势,使用混合公式来研究多类分类的增强。此外,与DL方法相关的一些挑战将通过探索迁移学习,领域适应和数据增强技术来解决。主题2将通过探索各种DL方法在处理时间序列数据和图像数据方面的优势,重点关注剩余使用寿命预测和生物量估计。为了进一步提高这些DL方法在准确性和鲁棒性方面的性能,将研究域信息DL方法、集成学习技术和不确定性量化方法。主题3将重点关注基于积累和理解信息增益的决策支持模块的开发,通过分类和预测建模方法,由建议的DDSS框架中包含的深度学习技术支持。建议DDSS框架的有效性和优势将使用Tecsis和Hegyi提供的数据集,为各自的应用程序。三名硕士,四名本科生,一名博士和一名PDF将在即将到来的数据分析和深度学习领域接受培训。通过采用这项研究的结果,Tecsis和Hegyi希望在各自的行业扩大他们的研发服务和客户基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Namachchivaya, NavaratnamSri其他文献
Namachchivaya, NavaratnamSri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Namachchivaya, NavaratnamSri', 18)}}的其他基金
Quickest change detection, statistical learning and nonlinear filtering of jet engine data
喷气发动机数据的最快变化检测、统计学习和非线性过滤
- 批准号:
543433-2019 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Collaborative Research and Development Grants
Quickest change detection, statistical learning and nonlinear filtering of jet engine data
喷气发动机数据的最快变化检测、统计学习和非线性过滤
- 批准号:
543433-2019 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
- 批准号:
2336002 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Continuing Grant
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
- 批准号:
23H01019 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:
2324742 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Continuing Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
- 批准号:
2301173 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Continuing Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
- 批准号:
2301172 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Continuing Grant
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
- 批准号:
23K03913 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research and development of vector image retrieval by cooperating knowledge-driven and data-driven models
知识驱动与数据驱动模型协同的矢量图像检索研究与开发
- 批准号:
23K11121 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of data-driven methods for de novo design of novel enzymes.
开发用于新型酶从头设计的数据驱动方法。
- 批准号:
2890692 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Studentship
Development of bioinformatic pipelines for multi omics data to model the effect of small molecule driven lipid metabolism on autophagy regulation
开发多组学数据的生物信息学管道,以模拟小分子驱动的脂质代谢对自噬调节的影响
- 批准号:
BB/Y512540/1 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Training Grant