A data driven modeling and control tool

数据驱动的建模和控制工具

基本信息

  • 批准号:
    548804-2020
  • 负责人:
  • 金额:
    $ 9.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Idea to Innovation
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The increased availability of sensor data and advanced computing tools has made some very lucrative opportunities for the manufacturing sector. In particular, the new large data sets we are now collecting can now be used to build accurate models for the process, which in turn can be utilized to dramatically improve on-spec production, and enable rapid new product design. This emerging technology is well suited for batch and batch like operation (specialty chemical production, pharmaceuticals or virtually in every continuous operation in startup mode) which are by definition transient in nature, and witness significant variation over a process cycle. Most of the existing commercial software focuses on operation at a steady state. Limited tools exist for modelling and controlling batch operation, but the existing tools cannot optimally control batches of varying duration to, for instance, minimize production time. There is new work in the area of machine learning/artificial intelligence based models, but those are currently limited to classification kind of problems, and not at the commercialization stage for a full-scale industrial plant. Recent results from the PI's, Prashant Mhaskar and Michael Thompson's group, have demonstrated the capability of a subspace model based data driven modelling and control approach to handle a myriad of applications, ranging from semi-continuous distillation to steel refining to hydrogen production startup to polymer processing to wastewater treatment. The present proposal aims to commercialize this framework. Hydromantis Inc. (a wastewater treatment plant models), Praxair Inc- Now Linde Inc., Imperial Oil and Rescraft Plastic Products Inc. intend to increase their competitiveness by updating their facilities with more intelligent systems and have expressed a desire to evaluate our approach once a working prototype is available. Easy access to other industrial members is readily enabled, through the PI's involvement in the McMaster Advanced Control Consortium (an academy industry consortium with 7 annual membership paying members) and McMaster Manufacturing Research Institute which serves the community offering contract and research services.
传感器数据和先进计算工具可用性的增加为制造业带来了一些非常有利可图的机会。特别是,我们现在收集的新的大型数据集现在可以用于为该过程构建准确的模型,从而可以用于显着提高按规格生产,并实现快速的新产品设计。这一新兴技术非常适合于间歇式和间歇式操作(特种化学品生产、制药或几乎在启动模式下的每个连续操作),这些操作本质上是瞬时的,并且在工艺周期内发生显著变化。大多数现有的商业软件侧重于稳态运行。有限的工具存在于建模和控制批量操作,但现有的工具不能最佳地控制不同持续时间的批次,例如,最小化生产时间。在基于机器学习/人工智能的模型领域有新的工作,但这些工作目前仅限于分类问题,而不是在商业化阶段的全面工业工厂。 来自PI、Prashant Mhaskar和Michael Thompson小组的最新结果已经证明了基于子空间模型的数据驱动建模和控制方法处理无数应用的能力,从半连续蒸馏到钢铁精炼到制氢启动到聚合物加工到废水处理。本提案旨在使这一框架商业化。Hydromantis公司(废水处理厂模型),普莱克斯公司-现在林德公司,Imperial Oil and Rescraft Plastic Products Inc. 打算通过使用更智能的系统更新其设施来提高其竞争力,并表示希望在获得工作原型后对我们的方法进行评估。通过PI参与McMaster Advanced Control Consortium(一个拥有7个年度会员付费成员的学术行业联盟)和McMaster Manufacturing Research Institute(为社区提供合同和研究服务),可以轻松访问其他工业成员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mhaskar, Prashant其他文献

Safe-Parking of a Hydrogen Production Unit
Subspace Identification-Based Modeling and Control of Batch Particulate Processes
A hybrid modeling approach integrating first-principles knowledge with statistical methods for fault detection in HVAC systems
  • DOI:
    10.1016/j.compchemeng.2020.107022
  • 发表时间:
    2020-11-02
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Hassanpour, Hesam;Mhaskar, Prashant;Salsbury, Timothy, I
  • 通讯作者:
    Salsbury, Timothy, I
Subspace model identification and model predictive control based cost analysis of a semicontinuous distillation process
  • DOI:
    10.1016/j.compchemeng.2017.03.011
  • 发表时间:
    2017-08-04
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Meidanshahi, Vida;Corbett, Brandon;Mhaskar, Prashant
  • 通讯作者:
    Mhaskar, Prashant
Lyapunov-based model predictive control of stochastic nonlinear systems
  • DOI:
    10.1016/j.automatica.2012.06.033
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Mahmood, Maaz;Mhaskar, Prashant
  • 通讯作者:
    Mhaskar, Prashant

Mhaskar, Prashant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mhaskar, Prashant', 18)}}的其他基金

Next Generation Data Driven Modeling and Control of Batch and Batch Like Processes
下一代数据驱动的批量和类批量过程的建模和控制
  • 批准号:
    RGPIN-2022-04647
  • 财政年份:
    2022
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
A Smart Data Driven Monitoring and Control Approach: Application to Rotomolding
智能数据驱动的监测和控制方法:在滚塑中的应用
  • 批准号:
    543532-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
A hybrid modeling, monitoring and control approach for wastewater treatment plants
废水处理厂的混合建模、监测和控制方法
  • 批准号:
    538117-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
Adaptive, hybrid modeling and optimization for design and control of startup processes
用于设计和控制启动过程的自适应混合建模和优化
  • 批准号:
    508697-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
Handling Constraints and Uncertainty in Chemical Process Operation Using Nonlinear Model Predictive Control
使用非线性模型预测控制处理化工过程操作中的约束和不确定性
  • 批准号:
    RGPIN-2016-05391
  • 财政年份:
    2021
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual
A Smart Data Driven Monitoring and Control Approach: Application to Rotomolding
智能数据驱动的监测和控制方法:在滚塑中的应用
  • 批准号:
    543532-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
A hybrid modeling, monitoring and control approach for wastewater treatment plants
废水处理厂的混合建模、监测和控制方法
  • 批准号:
    538117-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
Nonlinear and Fault Tolerant Control
非线性和容错控制
  • 批准号:
    1000231088-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Canada Research Chairs
Adaptive, hybrid modeling and optimization for design and control of startup processes
用于设计和控制启动过程的自适应混合建模和优化
  • 批准号:
    508697-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Collaborative Research and Development Grants
Handling Constraints and Uncertainty in Chemical Process Operation Using Nonlinear Model Predictive Control
使用非线性模型预测控制处理化工过程操作中的约束和不确定性
  • 批准号:
    RGPIN-2016-05391
  • 财政年份:
    2020
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
  • 批准号:
    2301411
  • 财政年份:
    2024
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Standard Grant
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
  • 批准号:
    23K25946
  • 财政年份:
    2024
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404369
  • 财政年份:
    2024
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404368
  • 财政年份:
    2024
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Standard Grant
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
  • 批准号:
    10823917
  • 财政年份:
    2024
  • 资助金额:
    $ 9.11万
  • 项目类别:
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
  • 批准号:
    23H01250
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
  • 批准号:
    10551576
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
  • 批准号:
    2327862
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223987
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
    Standard Grant
Dissociating respiratory depression and analgesia via a data-driven model of interacting respiratory and pain networks
通过呼吸和疼痛网络相互作用的数据驱动模型分离呼吸抑制和镇痛
  • 批准号:
    10644300
  • 财政年份:
    2023
  • 资助金额:
    $ 9.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了