Remote Monitoring of Production Operations using a Smart Gateway Device

使用智能网关设备远程监控生产运营

基本信息

  • 批准号:
    560406-2020
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

In recent years, deep learning algorithms have surpassed human-level accuracy for many cognitive applications. This trend has motivated researchers to use deep learning algorithms to analyze collected data from sensors for many applications, such as health and autonomous driving. In the design of deep learning algorithms, the primary focus of optimization has been accuracy and throughput. However, by introducing deep learning in some applications, the massive amount of data should be analyzed, and real-time processing is critical; new techniques are needed to accelerate the process. Edge devices are especially promising for accelerating deep learning algorithms due to their low power budget and high efficiency. Using gateway devices to apply deep learning models is referred to as edge computing. The name edge indicates applying the model at one edge of a framework, which is different from cloud computing, applying the deep learning model on a remote server. Because of the low capability and reliability of the edge devices on data management and latency on cloud computing, fog architecture is introduced. This proposal aims to develop a computer vision and deep learning-based model to be implemented on a gateway device to accelerate the video inferencing and reliability. The proposed system is applied to the video recorded from manufacturing floors to obtain real-time inspection for process monitoring and proactive efficiency improvement. To achieve the best performance in gateway device and deep learning, fog computing is proposed to use the device and algorithms effectively.
近年来,深度学习算法在许多认知应用中的准确性已经超过了人类水平。这一趋势促使研究人员使用深度学习算法来分析从传感器收集的数据,用于许多应用,例如健康和自动驾驶。在深度学习算法的设计中,优化的主要焦点是准确性和吞吐量。但在一些应用中引入深度学习,需要对海量数据进行分析,实时处理至关重要;需要新技术来加速这一过程。 由于其低功耗和高效率,边缘设备在加速深度学习算法方面尤其有前景。使用网关设备应用深度学习模型被称为边缘计算。 “边缘”这个名称表示将模型应用在框架的一个边缘,这与云计算不同,将深度学习模型应用在远程服务器上。由于边缘设备的数据管理能力和可靠性较低以及云计算的延迟,引入了雾架构。 该提案旨在开发一种基于计算机视觉和深度学习的模型,在网关设备上实现,以加速视频推理和可靠性。所提出的系统应用于从制造车间记录的视频,以获得过程监控和主动效率提高的实时检查。为了实现网关设备和深度学习的最佳性能,雾计算被提出来有效地使用设备和算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rahimi, Afshin其他文献

Fault estimation of satellite reaction wheels using covariance based adaptive unscented Kalman filter
  • DOI:
    10.1016/j.actaastro.2017.02.003
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Rahimi, Afshin;Kumar, Krishna Dev;Alighanbari, Hekrnat
  • 通讯作者:
    Alighanbari, Hekrnat
Helicopter Turboshaft Engine Database as a Conceptual Design Tool
  • DOI:
    10.4271/03-15-01-0003
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Bazmi, Farshid;Rahimi, Afshin
  • 通讯作者:
    Rahimi, Afshin
Fault detection and isolation of control moment gyros for satellite attitude control subsystem
  • DOI:
    10.1016/j.ymssp.2019.106419
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Rahimi, Afshin;Kumar, Krishna Dev;Alighanbari, Hekmat
  • 通讯作者:
    Alighanbari, Hekmat
Fault Isolation of Reaction Wheels for Satellite Attitude Control
A Three-Stage Data-Driven Approach for Determining Reaction Wheels' Remaining Useful Life Using Long Short-Term Memory
  • DOI:
    10.3390/electronics10192432
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Islam, Md Sirajul;Rahimi, Afshin
  • 通讯作者:
    Rahimi, Afshin

Rahimi, Afshin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rahimi, Afshin', 18)}}的其他基金

Online Fault Diagnosis, Prognosis, and Health Monitoring of Small Satellites
小卫星在线故障诊断、预测和健康监测
  • 批准号:
    RGPIN-2020-05513
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Online Fault Diagnosis, Prognosis, and Health Monitoring of Small Satellites
小卫星在线故障诊断、预测和健康监测
  • 批准号:
    RGPIN-2020-05513
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Online Fault Diagnosis, Prognosis, and Health Monitoring of Small Satellites
小卫星在线故障诊断、预测和健康监测
  • 批准号:
    DGECR-2020-00502
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Launch Supplement
Online Fault Diagnosis, Prognosis, and Health Monitoring of Small Satellites
小卫星在线故障诊断、预测和健康监测
  • 批准号:
    RGPIN-2020-05513
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
On-line fault diagnosis and prognosis for Aerospace systems
航空航天系统的在线故障诊断和预测
  • 批准号:
    468958-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
On-line fault diagnosis and prognosis for Aerospace systems
航空航天系统的在线故障诊断和预测
  • 批准号:
    468958-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
On-line fault diagnosis and prognosis for Aerospace systems
航空航天系统的在线故障诊断和预测
  • 批准号:
    468958-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years

相似海外基金

Optimising CNC Machine Tool Coolant Fluid condition to prolong usage and efficiency of an expensive essential resource thereby reducing cost, improving production quality and protecting operators using a unique and innovative Coolant Monitoring Analyser
使用独特和创新的冷却液监测分析仪优化数控机床冷却液条件,延长昂贵的重要资源的使用时间和效率,从而降低成本、提高生产质量并保护操作员
  • 批准号:
    10075142
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant for R&D
Machine Learning for condition monitoring of production equipment
用于生产设备状态监测的机器学习
  • 批准号:
    10075524
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant for R&D
Application of environmental monitoring of Listeria monocytogenes in food production to sanitation control according to HACCP.
根据HACCP,食品生产中单增李斯特氏菌环境监测在卫生控制中的应用。
  • 批准号:
    23K12693
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CC* NPEO: The Research and Science Engagement Center: A Production Platform for Operations, Applied Training, Monitoring, and R&E Support
CC* NPEO:研究和科学参与中心:运营、应用培训、监控和研究的生产平台
  • 批准号:
    2328479
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
A new approach to monitoring glycosylation during glycoprotein production
监测糖蛋白生产过程中糖基化的新方法
  • 批准号:
    10830193
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
CAREER: Uncovering the neural dynamics of speech monitoring processes during language production
职业:揭示语言生成过程中语音监控过程的神经动力学
  • 批准号:
    2143805
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
Developing low-drift pH monitoring technologies for high-value bioprocessing and pharmaceutical production
开发用于高价值生物加工和药品生产的低漂移 pH 监测技术
  • 批准号:
    2854205
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Studentship
Improving sustainable development practice in concrete production through the monitoring of fresh concrete properties using an in-drum sensor
通过使用滚筒内传感器监测新拌混凝土特性,改善混凝土生产中的可持续发展实践
  • 批准号:
    505235-2016
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative Research and Development Grants
Improving sustainable development practice in concrete production through the monitoring of fresh concrete properties using an in-drum sensor
通过使用滚筒内传感器监测新拌混凝土特性,改善混凝土生产中的可持续发展实践
  • 批准号:
    505235-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative Research and Development Grants
BerryPredictor: Improving harvest forecasts, yield predictions and crop productivity by monitoring and optimising zonal phytoclimates in covered strawberry production
BerryPredictor:通过监测和优化覆盖草莓生产中的区域植物气候来改善收获预测、产量预测和作物生产力
  • 批准号:
    34299
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了