Integration of few layer graphene (FLG) composites into high-sensitive dynamic photodetectors and sensors exploiting fluctuational transport

将少层石墨烯 (FLG) 复合材料集成到利用波动传输的高灵敏度动态光电探测器和传感器中

基本信息

  • 批准号:
    561065-2020
  • 负责人:
  • 金额:
    $ 3.64万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Graphene is an exotic photoelectronic material of choice of this decade. It exhibits unique broadband optical absorption characteristics and metal like transport properties. Graphene's Fermi level coincides with the electron and hole states giving it high charge carriers mobility in excess of 15000 cm2V-1s-1 and electric current density sustenance million times higher than copper. This unique advantage makes the realization of broadband photodetectors possible that far exceeds the capabilities of conventional photodetectors both in bandwidth and responsiveness despite its one-atom layer thickness and has attracted significant interest in photonics applications. Graphene research as such has emerged as a translational nanotechnology bridging academic research to state-of-the-art applications and continues to do so by exploiting these unique properties. Few-layer-graphene (FLG) has also received much attention recently because of its promising bandgap tunability and acute temperature sensitivity. Our proposed research is to take up the challenge of identifying prospective FLG and FLG-composites that exhibit high photo-responsive gain with tunable bandwidth properties that can have a transformative impact in the photonics and imaging sensors industry. The project will delve into developing novel resonance-based FLG-photodetectors and sensors that would also tap on to the global photonics market that is expected to reach $970.5 billions by 2027. We will demonstrate proof-of-concept of developing novel high-gain photoelectronic devices with transparent and flexible form factors. Graphene's unique optical and electrical properties have the potential to make a profound impact in Information and Communications Technology in the short and long term. FLG-components integrated with silicon-based electronics will usher substantial performance improvements supporting huge data loads and enabling completely new applications. In the long run seamlessly integrating photonic devices, sensors, and gadgets into Smart Internet of Things is envisioned.
石墨烯是近十年来一种新型的光电材料。它表现出独特的宽带光吸收特性和类似金属的输运特性。石墨烯的费米能级与电子和空穴态一致,使其具有超过15000 cm 2 V-1 s-1的高电荷载流子迁移率和比铜高百万倍的电流密度。这种独特的优势使得宽带光电探测器的实现成为可能,尽管其单原子层厚度,但其在带宽和响应性方面远远超过常规光电探测器的能力,并且在光子学应用中引起了极大的兴趣。石墨烯研究本身已经成为一种将学术研究与最先进的应用相结合的转化纳米技术,并通过利用这些独特的特性继续这样做。少层石墨烯(FLG)由于其良好的带隙可调性和温度敏感性而受到广泛关注。我们提出的研究是要接受识别具有高光响应增益和可调带宽特性的前瞻性FLG和FLG复合材料的挑战,这些特性可以在光子学和成像传感器行业产生变革性影响。该项目将致力于开发新型的基于共振的FLG光电探测器和传感器,这些探测器和传感器也将进入全球光子学市场,预计到2027年将达到9705亿美元。我们将展示开发具有透明和灵活形状因子的新型高增益光电器件的概念验证。石墨烯独特的光学和电学特性有可能在短期和长期内对信息和通信技术产生深远的影响。与硅基电子器件集成的FLG组件将带来实质性的性能改进,支持巨大的数据负载,并实现全新的应用。从长远来看,可以将光子设备,传感器和小工具无缝集成到智能物联网中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kim, Seonghwan其他文献

Open Macromolecular Genome: Generative Design of Synthetically Accessible Polymers.
  • DOI:
    10.1021/acspolymersau.3c00003
  • 发表时间:
    2023-08-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kim, Seonghwan;Schroeder, Charles M;Jackson, Nicholas E
  • 通讯作者:
    Jackson, Nicholas E
Direct Detection and Speciation of Trace Explosives Using a Nanoporous Multifunctional Microcantilever
  • DOI:
    10.1021/ac500745g
  • 发表时间:
    2014-05-20
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Lee, Dongkyu;Kim, Seonghwan;Thundat, Thomas
  • 通讯作者:
    Thundat, Thomas
Additive Effect of Oral Steroid with Topical Nonsteroidal Anti-inflammatory Drug for Preventing Cystoid Macular Edema after Cataract Surgery in Patients with Epiretinal Membrane.
  • DOI:
    10.3341/kjo.2016.0109
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kim, Seonghwan;Kim, Mee Kum;Wee, Won Ryang
  • 通讯作者:
    Wee, Won Ryang
High-Performance, Room Temperature Hydrogen Sensing With a Cu-BTC/Polyaniline Nanocomposite Film on a Quartz Crystal Microbalance
  • DOI:
    10.1109/jsen.2019.2904870
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Abuzalat, Osama;Wong, Danny;Kim, Seonghwan
  • 通讯作者:
    Kim, Seonghwan
Cantilever Sensors: Nanomechanical Tools for Diagnostics
  • DOI:
    10.1557/mrs2009.121
  • 发表时间:
    2009-06-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Datar, Ram;Kim, Seonghwan;Thundat, Thomas
  • 通讯作者:
    Thundat, Thomas

Kim, Seonghwan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kim, Seonghwan', 18)}}的其他基金

Nano Sensing Systems
纳米传感系统
  • 批准号:
    CRC-2020-00322
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs
Nanomechanical Devices for Physical and Chemical Sensing Applications
用于物理和化学传感应用的纳米机械器件
  • 批准号:
    RGPIN-2020-03943
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Integration of few layer graphene (FLG) composites into high-sensitive dynamic photodetectors and sensors exploiting fluctuational transport
将少层石墨烯 (FLG) 复合材料集成到利用波动传输的高灵敏度动态光电探测器和传感器中
  • 批准号:
    561065-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Alliance Grants
Nanomechanical Devices for Physical and Chemical Sensing Applications
用于物理和化学传感应用的纳米机械器件
  • 批准号:
    RGPIN-2020-03943
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Nano Sensing Systems
纳米传感系统
  • 批准号:
    CRC-2020-00322
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs
Nano Sensing Systems
纳米传感系统
  • 批准号:
    1000230893-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs
Nano Sensing Systems
纳米传感系统
  • 批准号:
    1000233108-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs
Nanomechanical Devices for Physical and Chemical Sensing Applications
用于物理和化学传感应用的纳米机械器件
  • 批准号:
    RGPIN-2020-03943
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of metal-organic framework nano-materials to develop a cost-effective, portable methane sensing IIOT device
研究金属有机框架纳米材料以开发具有成本效益的便携式甲烷传感工业物联网设备
  • 批准号:
    539278-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Engage Grants Program
Development of multimodal sensing devices for receptor-free molecular detection and quantification
开发用于无受体分子检测和定量的多模式传感装置
  • 批准号:
    RGPIN-2014-04788
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Discovering Novel Properties in Few-Layer MXenes Using Analytical, In-Situ Scanning Transmission Electron Microscopy
使用分析原位扫描透射电子显微镜发现少层 MXene 的新特性
  • 批准号:
    2309396
  • 财政年份:
    2023
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Continuing Grant
High yield production of phase-pure mono- or few-layer two-dimensional (2D) nanosheets of graphene like materials by electrochemical exfoliation
通过电化学剥离高产率生产纯相单层或少层二维(2D)石墨烯类材料纳米片
  • 批准号:
    571325-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Alliance Grants
High yield production of phase-pure mono- or few-layer two-dimensional (2D) nanosheets of graphene like materials by electrochemical exfoliation
通过电化学剥离高产率生产纯相单层或少层二维(2D)石墨烯类材料纳米片
  • 批准号:
    571325-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Alliance Grants
Integration of few layer graphene (FLG) composites into high-sensitive dynamic photodetectors and sensors exploiting fluctuational transport
将少层石墨烯 (FLG) 复合材料集成到利用波动传输的高灵敏度动态光电探测器和传感器中
  • 批准号:
    561065-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Alliance Grants
Research into many-body quantum phenomena characteristic of few-layer Dirac-electron systems
少层狄拉克电子系统的多体量子现象特征研究
  • 批准号:
    21K03534
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAS: Collaborative Research: Solar CO2 Reduction by Atomically Dispersed Metal Sites on Few-Layer Carbon Nitride
CAS:合作研究:通过少层氮化碳上的原子分散金属位点减少太阳能二氧化碳
  • 批准号:
    2102198
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Solar CO2 Reduction by Atomically Dispersed Metal Sites on Few-Layer Carbon Nitride
CAS:合作研究:通过少层氮化碳上的原子分散金属位点减少太阳能二氧化碳
  • 批准号:
    2102299
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Solar CO2 Reduction by Atomically Dispersed Metal Sites on Few-Layer Carbon Nitride
CAS:合作研究:通过少层氮化碳上的原子分散金属位点减少太阳能二氧化碳
  • 批准号:
    2102655
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
Optical Properties of Monolayer and Few-Layer 2D Covalent Organic Frameworks (C05)
单层和少层二维共价有机框架的光学性质 (C05)
  • 批准号:
    443841467
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Collaborative Research Centres
Implementation of a Scalable Thermomechanical Graphite Exfoliation Method to Produce High Yields of Few-Layer Graphene
实施可扩展的热机械石墨剥离方法以生产高产率的少层石墨烯
  • 批准号:
    537695-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了