Dynamics and C*-algebras

动力学和 C* 代数

基本信息

  • 批准号:
    RGPIN-2016-04104
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Operator algebras were initially studied as models for quantum mechanical systems, because the noncommutativity of multiplication of operators can be used to encode the Heisenberg uncertaintly principle. Since then, this same noncommutative nature of operator algebras has been applied in many other areas of mathematics. This has been particularly successful for dynamical systems, the mathematical models for the spatial and temporal evolution of physical systems. This interaction between operator algebras and dynamical systems is the subject of my research. There are quite general constructions of operator algebras from dynamical systems. In the view of Alain Connes' program of noncommutative geometry, these act as a replacement for the space of orbits of the system. This first provides a range of tools for understanding the dynamics through their associated operator algebras. This has been particularly effective over the past thirty years, as Connes' program has provided powerful new ideas. As an example, Krieger gave new invariants for symbolic systems through K-theory of the C*-algebras. Results with my co-authors show how analogous results can provide complete invariants for the orbit structure of other systems. The construction from dynamical systems also provides a rich source of examples of operator algebras and understanding their structure has been a major goal for the field. George Elliott's classification program for amenable C*-algebras has been one of the largest areas of operator algebras over the past twenty-five years and many of the most impressive results, such as those of Toms and Winter, have been for examples arising from dynamical systems. My own work in this area in the early days produced ideas and technical tools which are still in use today. My proposal is to continue my investigations into these interactions. There is special emphasis on chaotic systems for which I have recently extended Krieger's invariant for to a much broader class of chaotic dynamical systems. This gives innovative tools for the study of the geometry of fractals. The goal is a better understanding of the invariant but also the development of tools within C*-algebra theory which elucidate the dynamical structure. In another direction, my goal is to develop tools that provide quantitative measures for a pair of C*-algebras which, although each is constructed from complicated dynamics, are related to each other in a fairly simple fashion.
算符代数最初是作为量子力学系统的模型来研究的,因为算符乘法的非交换性可以用来编码海森伯格不确定原理。从那时起,算子代数的这种同样的非交换性质被应用于数学的许多其他领域。这对于动力系统来说尤其成功,动力系统是物理系统的空间和时间演化的数学模型。算子代数和动力系统之间的这种相互作用是我研究的主题。 从动力系统出发,算子代数的构造有很一般的方法。在阿兰·康尼斯的非对易几何方案中,这些起到了替代系统轨道空间的作用。这首先提供了一系列工具,用于通过相关的算子代数来理解动力学。这在过去的三十年里尤其有效,因为康奈斯的项目提供了强大的新想法。作为例子,Krieger通过C*-代数的K-理论给出了符号系统的新的不变量。与我的合著者的结果表明,类似的结果可以为其他系统的轨道结构提供完全不变量。 动力系统的构造也提供了丰富的算符代数的例子,了解它们的结构一直是该领域的一个主要目标。George Elliott关于顺从C*-代数的分类程序在过去25年中一直是算子代数的最大领域之一,许多最令人印象深刻的结果,如汤姆和温特的结果,都是来自动力系统的例子。我早期在这方面的工作产生了今天仍在使用的想法和技术工具。 我的建议是继续我对这些互动的调查。其中特别强调混沌系统,我最近将Krieger不变量推广到更广泛的混沌动力系统。这为研究分形学提供了创新的工具。我们的目标是更好地理解不变量,同时也是C*-代数理论中阐明动态结构的工具的发展。 在另一个方向上,我的目标是开发工具,为一对C*-代数提供量化度量,尽管每个C*-代数都是由复杂的动力学构造的,但它们以一种相当简单的方式彼此相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Putnam, Ian其他文献

Non-homogeneous extensions of Cantor minimal systems
康托最小系统的非齐次扩张
Minimal homeomorphisms and topological $K$-theory
最小同胚和拓扑 $K$ 理论
  • DOI:
    10.4171/ggd/707
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deeley, Robin;Putnam, Ian;Strung, Karen R.
  • 通讯作者:
    Strung, Karen R.

Putnam, Ian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Putnam, Ian', 18)}}的其他基金

Dynamics and C*-algebras
动力学和 C* 代数
  • 批准号:
    RGPIN-2016-04104
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras and dynamical systems
算子代数和动力系统
  • 批准号:
    CRC-2015-00121
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs
Dynamics and C*-algebras
动力学和 C* 代数
  • 批准号:
    RGPIN-2016-04104
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras And Dynamical Systems
算子代数和动力系统
  • 批准号:
    CRC-2015-00121
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs
Operator algebras and dynamical systems
算子代数和动力系统
  • 批准号:
    CRC-2015-00121
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs
Operator algebras and dynamical systems
算子代数和动力系统
  • 批准号:
    CRC-2015-00121
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs
Dynamics and C*-algebras
动力学和 C* 代数
  • 批准号:
    RGPIN-2016-04104
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and C*-algebras
动力学和 C* 代数
  • 批准号:
    RGPIN-2016-04104
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras and dynamical systems
算子代数和动力系统
  • 批准号:
    CRC-2015-00121
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs
Operator algebras and dynamical systems
算子代数和动力系统
  • 批准号:
    CRC-2015-00121
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: C*-algebras and Dynamics Beyond the Elliott Program
NSF-BSF:艾略特纲领之外的 C* 代数和动力学
  • 批准号:
    2400332
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Dynamics and C*-algebras
动力学和 C* 代数
  • 批准号:
    RGPIN-2016-04104
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Interactions between operator algebras and topological dynamics
算子代数与拓扑动力学之间的相互作用
  • 批准号:
    2750740
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Studentship
Dynamics and C*-algebras
动力学和 C* 代数
  • 批准号:
    RGPIN-2016-04104
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
NSF-BSF: Dynamics and Operator Algebras beyond the Elliott Classification Program
NSF-BSF:艾略特分类计划之外的动力学和算子代数
  • 批准号:
    2055771
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Dynamics, Groupoids, and C*-Algebras
动力学、群群和 C* 代数
  • 批准号:
    2000057
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Dynamics and Operator Algebras
动力学和算子代数
  • 批准号:
    1900746
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Dynamics and C*-algebras
动力学和 C* 代数
  • 批准号:
    RGPIN-2016-04104
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and C*-algebras
动力学和 C* 代数
  • 批准号:
    RGPIN-2016-04104
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Jordan Algebras, Finsler Geometry and Dynamics
乔丹代数、芬斯勒几何和动力学
  • 批准号:
    EP/R044228/1
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了