Controlling Transcritical Thermoacoustic Interactions for Space Propulsion and Novel Energy Systems

控制空间推进和新型能源系统的跨临界热声相互作用

基本信息

  • 批准号:
    RGPIN-2016-04143
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Rocket science can provide us with novel solutions to some of our modernday energy concerns. Combustion instabilities in liquid rocket engines are one of the most important and challenging problems in space propulsion. These instabilities occur as the unsteady heat release of combustion couples with the acoustic modes in the combustion chamber; the complexity of this interaction is compounded by the highly non-linear, transcritical thermodynamic base state of the cryogenic propellants. The self-excited thermoacoustic coupling needs to be identified, as energetic build-up in the acoustic mode is the most important cause of catastrophic engine failure. However, this very serious challenge in the rocket propulsion community may actually prove to be a novel solution to some of our energy concerns, particularly in industrial settings. By carefully controlling the entropic-acoustic coupling, the energy created through this non-linear interaction may be harvested in a thermoacoustic heat engine to produce useful mechanical power, thus, permitting the efficient re-use of industrial waste heat. The research program will build upon the research of the applicant on liquid rocket engine to extend the knowledge and expertise related to the fundamental mechanisms of thermoacoustic coupling in high-pressure, transcritical systems. This understanding is gleaned from first-principal-based, high-quality numerical simulations of canonical flow setups of the interaction between acoustics, thermodynamics and fluid mechanics. This expertise will be applied to two seemingly distinct, yet surprisingly tangential fields of science and engineering. 1) We will seek to identify intrinsic instability modes in transcritical diffusion flames as a means to explain the onset of high-frequency, self-excited instability modes in rocket engines. 2) We will then transpose our expertise in thermoacoustic coupling in rocket propulsion systems towards the development of a transcritical thermoacoustic heat engine for the conversion of industrial waste heat to mechanical energy. Up to 50% of the total energy consumed in industrial settings is lost through hot exhaust gases and liquids. The recuperation of industrial waste heat by means of a thermoacoustic heat engine increases overall efficiency, saves money and reduces emissions. Additionally, the acquired knowledge of combustion instabilities in high-pressure systems will have direct relevance to gas turbine, premixed automotive injection systems and air-breathing propulsive technology.
火箭科学可以为我们提供一些新颖的解决方案,以解决我们现代的一些能源问题。液态火箭发动机中的燃烧不稳定性是太空推进中最重要,最具挑战性的问题之一。这些不稳定性发生是燃烧室与燃烧室中的声学模式的不稳定热量释放。这种相互作用的复杂性是由高度非线性的跨临界热力学基础状态复杂化的。需要识别自兴奋的热声耦合,因为在声学模式下有能量的堆积是灾难性发动机故障的最重要原因。但是,在火箭推进社区中的这一非常严重的挑战实际上可能是解决我们一些能源问题的新颖解决方案,尤其是在工业环境中。通过仔细控制熵声耦合,可以在热声热发动机中收获通过这种非线性相互作用产生的能量,以产生有用的机械功率,从而可以有效地重复使用工业废物。 该研究计划将基于申请人对液体火箭发动机的研究,以扩展与高压,跨危机系统中热声耦合的基本机制相关的知识和专业知识。 这种理解是从基于初级的,高质量的数值模拟中收集的,这些模拟是对声学,热力学和流体力学之间相互作用的规范流动设置。该专业知识将应用于两个看似与众不同但令人惊讶的科学与工程领域。 1)我们将寻求确定跨临界扩散火焰中的固有不稳定性模式,以解释火箭发动机中高频,自偏见的不稳定性模式的发作。 2)然后,我们将在火箭推进系统中的热声耦合方面转移我们的专业知识,以开发跨临界热声热发动机,以将工业废物转换为机械能。 在工业环境中消耗的总能源的50%通过热的排气和液体损失。通过热声热发动机对工业废热的恢复会提高整体效率,节省资金并减少排放。此外,高压系统中燃烧不稳定性的知识将与燃气轮机,预混合的汽车注入系统和空气呼吸推进技术直接相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hickey, JeanPierre其他文献

Hickey, JeanPierre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hickey, JeanPierre', 18)}}的其他基金

Controlling Transcritical Thermoacoustic Interactions for Space Propulsion and Novel Energy Systems
控制空间推进和新型能源系统的跨临界热声相互作用
  • 批准号:
    RGPIN-2016-04143
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a metal-powder fuel for a novel in-space propulsion technology
开发用于新型太空推进技术的金属粉末燃料
  • 批准号:
    542003-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
High-fidelity simulations and low-order aeroacoustic modeling of engine test cells
发动机测试单元的高保真模拟和低阶气动声学建模
  • 批准号:
    531362-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a metal-powder fuel for a novel in-space propulsion technology
开发用于新型太空推进技术的金属粉末燃料
  • 批准号:
    542003-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
Controlling Transcritical Thermoacoustic Interactions for Space Propulsion and Novel Energy Systems
控制空间推进和新型能源系统的跨临界热声相互作用
  • 批准号:
    RGPIN-2016-04143
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Controlling Transcritical Thermoacoustic Interactions for Space Propulsion and Novel Energy Systems
控制空间推进和新型能源系统的跨临界热声相互作用
  • 批准号:
    RGPIN-2016-04143
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
High-fidelity simulations and low-order aeroacoustic modeling of engine test cells********
发动机测试单元的高保真模拟和低阶气动声学建模********
  • 批准号:
    531362-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Development Grants
Low-Order Model of a Fluidic Thrust Vector for a Venture Class Orbital Launch Vehicle**
风险级轨道运载火箭流体推力矢量的低阶模型**
  • 批准号:
    537157-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program
Predictive Modelling of Engine Inlet Distortion in Crosswind Conditions
侧风条件下发动机进气道变形的预测建模
  • 批准号:
    513713-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program
Controlling Transcritical Thermoacoustic Interactions for Space Propulsion and Novel Energy Systems
控制空间推进和新型能源系统的跨临界热声相互作用
  • 批准号:
    RGPIN-2016-04143
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Controlling Transcritical Thermoacoustic Interactions for Space Propulsion and Novel Energy Systems
控制空间推进和新型能源系统的跨临界热声相互作用
  • 批准号:
    RGPIN-2016-04143
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Controlling Transcritical Thermoacoustic Interactions for Space Propulsion and Novel Energy Systems
控制空间推进和新型能源系统的跨临界热声相互作用
  • 批准号:
    RGPIN-2016-04143
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Controlling Transcritical Thermoacoustic Interactions for Space Propulsion and Novel Energy Systems
控制空间推进和新型能源系统的跨临界热声相互作用
  • 批准号:
    RGPIN-2016-04143
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Controlling Transcritical Thermoacoustic Interactions for Space Propulsion and Novel Energy Systems
控制空间推进和新型能源系统的跨临界热声相互作用
  • 批准号:
    RGPIN-2016-04143
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Controlling Transcritical Thermoacoustic Interactions for Space Propulsion and Novel Energy Systems
控制空间推进和新型能源系统的跨临界热声相互作用
  • 批准号:
    RGPIN-2016-04143
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了