Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
基本信息
- 批准号:RGPIN-2016-05914
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of my research program is to classify mathematical objects called operators. An operator is a transformation having a very rigid property known as linearity. Plotting the graph of a linear transformation acting on the Cartesian plane results in another plane in three dimensional space, for instance. This simple property of operators makes them amenable to analysis using mathematical tools. On the other hand, operators can be fruitfully used to describe many important phenomena occurring in natural science and engineering. Indeed, they are the basic objects appearing in quantum mechanics for example. Consequently, it is desirable to develop a solid mathematical theory for them. The anticipated classification resulting from my research would yield a convenient method for understanding operators, and could benefit both mathematicians and scientists in other fields.
Building a general theory is a complex problem since operators exhibit tremendous variety. Fortunately, many common operators that are frequently encountered in applications display some level of additional structure, and basing a classification on this given extra structure becomes a more manageable endeavour. The idea to achieve it is to identify a certain concrete model subclass of representatives. If done appropriately, the study of the general operators can be reduced (in some precise sense) to the study of these more concrete models and broad conclusions can then be extracted thereof. The concrete operators are usually chosen to act on spaces consisting of functions, making them very familiar to mathematicians. In fact, this idea is not new and has been exploited to great effect for many years now in the case where the focus is on a single operator. To describe interactions between two natural systems however, one needs to capture the behaviour of a pair of operators. The state of the art knowledge on models for such pairs is still rather rudimentary, and improving it is the principal objective I will pursue.
There are two main features in the program described above, and they will be undertaken jointly with my graduate students. First, the collection of concrete representatives needs to be chosen to be rich enough in order for it to model a significant and practical family of general operators. This richness will be detected by grouping the two operators of interest together will all the ones that are naturally related to them into an operator algebra, and performing an analysis of the resulting object. The second step is then to explore and examine in great detail the concrete representatives that have been identified. The precise nature of our examination will depend on the information that is required, but a typical example could involve the so-called spectrum of the pair of operators which corresponds to the measurements of an observable quantity that can be made in a laboratory.
我的研究项目的目的是对称为运算符的数学对象进行分类。运算符是一种具有非常严格的属性(称为线性)的变换。例如,绘制作用在笛卡尔平面上的线性变换的图形会导致三维空间中的另一个平面。算子的这个简单性质使它们易于用数学工具进行分析。另一方面,算子可以有效地描述自然科学和工程中的许多重要现象。事实上,它们是例如量子力学中出现的基本对象。因此,需要为它们建立一个坚实的数学理论。从我的研究中得到的预期分类将为理解算子提供一种方便的方法,并且可以使数学家和其他领域的科学家受益。
建立一个普遍的理论是一个复杂的问题,因为运营商表现出巨大的变化。幸运的是,在应用程序中经常遇到的许多常见操作符都显示了某种程度的额外结构,并且基于这种给定的额外结构进行分类变得更加易于管理。实现它的想法是识别代表的某个具体模型子类。如果处理得当,对一般算子的研究可以(在某种精确的意义上)简化为对这些更具体的模型的研究,然后可以从中得出广泛的结论。具体算子通常被选择作用于由函数组成的空间,这使得它们对数学家非常熟悉。事实上,这个想法并不新鲜,多年来一直被用于关注单个运营商的情况。然而,为了描述两个自然系统之间的相互作用,需要捕获一对算子的行为。关于这种配对的模型的最新知识仍然是相当初级的,改进它是我将追求的主要目标。
有两个主要特点,在上述计划,他们将共同承担与我的研究生。首先,需要选择足够丰富的具体代表集合,以便它能够建模一个重要而实用的一般运算符家族。这种丰富性将通过将感兴趣的两个运算符分组在一起来检测,将所有与它们自然相关的运算符组合到运算符代数中,并对结果对象进行分析。然后,第二步是详细探讨和审查已确定的具体代表。我们检验的精确性质将取决于所需的信息,但一个典型的例子可能涉及到所谓的算符对的谱,它对应于可以在实验室中进行的可观测量的测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clouatre, Raphael其他文献
Clouatre, Raphael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clouatre, Raphael', 18)}}的其他基金
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
- 批准号:
283294-2009 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
- 批准号:
283294-2009 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
- 批准号:
283294-2009 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
- 批准号:
283294-2009 - 财政年份:2010
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
- 批准号:
283294-2009 - 财政年份:2009
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual