Scheduling Optimization of Manufacturing and Service Environments with Time-Lag Constraints
具有时滞约束的制造和服务环境的调度优化
基本信息
- 批准号:RGPIN-2017-03743
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this proposal is to further advance my research program in the realm of the no-wait and time-lag scheduling optimization. No-wait constraints denote that there should be no waiting time between consecutive operations of a job, which is a fundamental assumption in certain environments. Scheduling problems with time-lag constraints are a generalization of their no-wait version. Time-lag constraints force the jobs or the operations of the jobs to start or finish within a certain time window after the previous jobs or operations are completed. No-wait and time-lag constraints model situations in which a long delay between the starting time of an operation and the finish time of the previous operations is discouraged because it may damage or deteriorate the product.
For example, in the food industry, many of the production procedures involve perishable products, i.e., once the food is prepared and cooked, it must undergo the chilling process before a certain amount of time is elapsed or it must be discarded. Similar constraints are in place in industries in which the risk of product contamination must be reduced. One can list biotechnology industries, for example, blood transfusion as such fields. Automated medical laboratories usually use a combination of minimal and maximal time-lags to schedule the chemical reactions correctly. Hall and Sriskandarajah [16] and Deppner [17] provide a comprehensive review of the applications of the problem.
The proper objective functions to consider include minimizing the cost of production or the total processing time of the contracts in a factory; reducing the waiting time of the patients in a healthcare setting or clients in a government office. Another possibility is maximizing the utilization of the available resources. The mentioned problems are NP-hard. My research in this area during the past few years reveals that to solve the no-wait or time-lag scheduling problems to optimality using mathematical programming models, the problem instance should have less than 20 jobs.
The proposed solution methods in this application progress the available literature by applying novel approaches to the scheduling problems that I have been studying for the past eight years. These methods include finding tight upper- or lower bounds for the optimal solution using semidefinite programming or Lagrangian relaxation; using decomposition techniques such as Bender's method; and conducting stochastic optimization techniques to the non-deterministic cases.
The mentioned problems and solution methods are sophisticated yet fundamental and fill the gaps that currently exist in the literature. Moreover, the practicality of the defined problems and the solution methods will lead to the efficiency improvement and optimization of the Canadian and international businesses.
本提案的目的是进一步推进我在无等待和时滞调度优化领域的研究计划。无等待约束表示作业的连续操作之间不应该有等待时间,这是某些环境中的基本假设。具有时滞约束的调度问题是其无等待版本的一般化。时滞约束强制作业或作业的操作在前一个作业或操作完成后的一定时间窗口内开始或结束。无等待和时滞约束模型,在这种情况下,不鼓励在操作的开始时间和前一个操作的完成时间之间有很长的延迟,因为这可能会损坏或恶化产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samarghandi, Hamed其他文献
Samarghandi, Hamed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samarghandi, Hamed', 18)}}的其他基金
Scheduling Optimization of Manufacturing and Service Environments with Time-Lag Constraints
具有时滞约束的制造和服务环境的调度优化
- 批准号:
RGPIN-2017-03743 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Scheduling Optimization of Manufacturing and Service Environments with Time-Lag Constraints
具有时滞约束的制造和服务环境的调度优化
- 批准号:
RGPIN-2017-03743 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Scheduling Optimization of Manufacturing and Service Environments with Time-Lag Constraints
具有时滞约束的制造和服务环境的调度优化
- 批准号:
RGPIN-2017-03743 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Scheduling Optimization of Manufacturing and Service Environments with Time-Lag Constraints
具有时滞约束的制造和服务环境的调度优化
- 批准号:
RGPIN-2017-03743 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Scheduling Optimization of Manufacturing and Service Environments with Time-Lag Constraints
具有时滞约束的制造和服务环境的调度优化
- 批准号:
RGPIN-2017-03743 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase II: Design optimization and manufacturing scale-up of oral dosages with environmentally responsive polymers
SBIR 第二阶段:使用环境响应型聚合物进行口服剂量的设计优化和生产规模扩大
- 批准号:
2231141 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Cooperative Agreement
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
- 批准号:
2414946 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Optimization, Manufacturing and Testing of a Lead Therapeutic Bacteriophage Cocktail for the Treatment of Antibiotic-Resistant Klebsiella pneumoniae Infections
用于治疗耐抗生素肺炎克雷伯菌感染的先导治疗噬菌体混合物的优化、制造和测试
- 批准号:
10674294 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Multifidelity topology optimization method for heat transfer equipment fabricated via additive manufacturing
增材制造传热设备多保真拓扑优化方法
- 批准号:
23H01323 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimization of TIL Cell Manufacturing for Cancer Treatment
用于癌症治疗的 TIL 细胞制造优化
- 批准号:
10696746 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Steel Manufacturing - Blast Furnace Tuyere Vision System and Analytics for Process Operations Optimization
钢铁制造 - 高炉风口视觉系统和流程操作优化分析
- 批准号:
571169-2021 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Applied Research and Development Grants - Level 3
Idea to Innovation Grant (Innov IIB): Melt synthesis process and C-LMP cathode powder manufacturing optimization for end use
创意创新补助金 (Innov IIB):熔融合成工艺和最终用途的 C-LMP 阴极粉末制造优化
- 批准号:
580752-2023 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Idea to Innovation
Metal additive manufacturing optimization for laser powder bed fusion
激光粉末床融合的金属增材制造优化
- 批准号:
576877-2022 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
University Undergraduate Student Research Awards
Process Optimization and Product Design for Metal Additive Manufacturing via Knowledge-Assisted Machine Learning
通过知识辅助机器学习进行金属增材制造的工艺优化和产品设计
- 批准号:
RGPIN-2019-06601 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Design for Additive Manufacturing (DfAM): Topology Optimization
增材制造设计 (DfAM):拓扑优化
- 批准号:
572981-2022 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
University Undergraduate Student Research Awards