Process Optimization and Product Design for Metal Additive Manufacturing via Knowledge-Assisted Machine Learning

通过知识辅助机器学习进行金属增材制造的工艺优化和产品设计

基本信息

  • 批准号:
    RGPIN-2019-06601
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Additive Manufacturing (AM) is a disruptive technology that can fabricate complex shapes, customized parts, and directly make objects without expensive tooling. Among various AM technologies, metal AM has attracted the most attention due to the potentially wide application in industry. Key technical challenges to metal AM include process modeling, process parameter optimization, and product design for AM.  Process parameters (e.g., laser power, laser velocity, and layer thickness) influence the final mechanical properties such as porosity, tensile strength, and hardness significantly. To understand the relationship between the process parameters and the product mechanical properties, one builds physics-based models or data-driven models. Physics-based models use differential equations that govern the underlying thermomechanical process. Due to high process complexity, there are still lack of credible and reliable simulation tools for metal AM technologies. Data-driven models are derived from experiments on different process parameter settings. This approach, however, needs an exponentially growing number of experiments as the number of parameters becomes relatively large, which is the case for metal AM. The experiment costs soon become too high. Moreover, this approach needs to be applied for every different technology and even every machine, which prevents its practice use. Another challenge in design for AM is that the topology optimization results are not parametric and need tedious manual processing before AM. This proposal aims to research and develop methods for process parameter optimization and product design for metal AM to address the above challenges. I propose to use knowledge-assisted artificial neural networks to build a data-driven model with fewer experiments, which in return help to fine-tune a physics-based model and define key parameters and their effective value ranges. An integrated and simplified hybrid model will be defined that is easily transferable between different machines and technologies. Dedicated optimization algorithms are to be developed to optimize process parameters for both Laser Beam Melting and Laser Beam Deposition metal AM machines. I also propose to use primitive geometries such as holes, cylinders and triangles to be the basic elements for topology optimization so that the output of topology optimization is parametric geometry that can be directly used for optimization and AM. The outcome of the proposal will be methods and a software prototype that can generate parametric topology and geometry, model metal AM processes, and optimize process parameters for maximum efficiency, lowest cost, or highest product quality from metal AM. This research will fill a gap in the literature and meet the needs of an emerging US$6 billion industry. In total, 4 PhD, 2 MSc and 5 undergraduate students will be directly trained via this research program.
增材制造(AM)是一项颠覆性技术,它可以制造复杂的形状、定制的零件,并且无需昂贵的工具就可以直接制造物体。在各种增材制造技术中,金属增材制造因其潜在的广泛工业应用前景而备受关注。金属增材制造的关键技术挑战包括增材制造的工艺建模、工艺参数优化和产品设计。工艺参数(如激光功率、激光速度和层厚)显著影响气孔率、抗拉强度和硬度等最终机械性能。为了理解工艺参数和产品机械性能之间的关系,需要建立基于物理的模型或数据驱动的模型。基于物理的模型使用微分方程来控制潜在的热力学过程。由于金属增材制造技术的高工艺复杂性,目前还缺乏可靠的仿真工具。数据驱动模型来源于不同工艺参数设置的实验。然而,这种方法需要指数增长的实验数量,因为参数的数量变得相对较大,这是金属增材制造的情况。实验费用很快就变得太高了。此外,这种方法需要应用于每一种不同的技术,甚至每一台机器,这阻碍了它的实际应用。增材制造设计的另一个挑战是拓扑优化结果不是参数化的,需要在增材制造之前进行繁琐的人工处理。本提案旨在研究和开发金属增材制造工艺参数优化和产品设计方法,以解决上述挑战。我建议使用知识辅助的人工神经网络来构建一个实验较少的数据驱动模型,这反过来有助于对基于物理的模型进行微调,并定义关键参数及其有效值范围。将定义一个集成和简化的混合模型,该模型易于在不同的机器和技术之间转移。将开发专用优化算法,以优化激光熔化和激光沉积金属增材制造机器的工艺参数。我还建议使用孔、圆柱、三角形等原始几何作为拓扑优化的基本元素,使拓扑优化的输出是可直接用于优化和AM的参数几何。该提案的结果将是方法和软件原型,可以生成参数拓扑和几何形状,模拟金属增材制造过程,并优化工艺参数,以实现金属增材制造的最高效率,最低成本或最高产品质量。这项研究将填补文献的空白,并满足新兴的60亿美元产业的需求。该项目将直接培养4名博士、2名硕士和5名本科生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Gaofeng其他文献

Effects of coil shapes on wireless power transfer via magnetic resonance coupling
线圈形状对磁共振耦合无线电力传输的影响
  • DOI:
    10.1080/09205071.2014.919879
  • 发表时间:
    2014-06
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Shi, Xinzhi;Qi, Chang;Qu, Meiling;Ye, Shuangli;Wang, Gaofeng;Sun, Lingling;Yu, Zhiping
  • 通讯作者:
    Yu, Zhiping
A "4-cell" modular passive DMFC (direct methanol fuel cell) stack for portable applications
适用于便携式应用的“4 芯”模块化无源 DMFC(直接甲醇燃料电池)堆栈
  • DOI:
    10.1016/j.energy.2015.01.033
  • 发表时间:
    2015-03-15
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Wang, Luwen;He, Mingyan;Wang, Gaofeng
  • 通讯作者:
    Wang, Gaofeng
Ascorbate Induces Ten-Eleven Translocation (Tet) Methylcytosine Dioxygenase-mediated Generation of 5-Hydroxymethylcytosine
  • DOI:
    10.1074/jbc.c113.464800
  • 发表时间:
    2013-05-10
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Minor, Emily A.;Court, Brenda L.;Wang, Gaofeng
  • 通讯作者:
    Wang, Gaofeng
Modeling Radio-Frequency Devices Based on Deep Learning Technique
  • DOI:
    10.3390/electronics10141710
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Guan, Zhimin;Zhao, Peng;Wang, Gaofeng
  • 通讯作者:
    Wang, Gaofeng
A bipolar passive DMFC stack for portable applications
  • DOI:
    10.1016/j.energy.2017.12.039
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Wang, Luwen;Yuan, Zhaoxia;Wang, Gaofeng
  • 通讯作者:
    Wang, Gaofeng

Wang, Gaofeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Gaofeng', 18)}}的其他基金

Process Optimization and Product Design for Metal Additive Manufacturing via Knowledge-Assisted Machine Learning
通过知识辅助机器学习进行金属增材制造的工艺优化和产品设计
  • 批准号:
    RGPIN-2019-06601
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Process Optimization and Product Design for Metal Additive Manufacturing via Knowledge-Assisted Machine Learning
通过知识辅助机器学习进行金属增材制造的工艺优化和产品设计
  • 批准号:
    RGPIN-2019-06601
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Process Optimization and Product Design for Metal Additive Manufacturing via Knowledge-Assisted Machine Learning
通过知识辅助机器学习进行金属增材制造的工艺优化和产品设计
  • 批准号:
    RGPIN-2019-06601
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Key Technologies towards an Engineer Centered Quantitative Design Methodology
开发以工程师为中心的定量设计方法的关键技术
  • 批准号:
    RGPIN-2014-04291
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Key Technologies towards an Engineer Centered Quantitative Design Methodology
开发以工程师为中心的定量设计方法的关键技术
  • 批准号:
    RGPIN-2014-04291
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Knowledge Mining and Optimization of Residential Stock and Flow End Use Model
住宅存量和流量最终使用模型的知识挖掘与优化
  • 批准号:
    507739-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Engage Grants Program
Developing Key Technologies towards an Engineer Centered Quantitative Design Methodology
开发以工程师为中心的定量设计方法的关键技术
  • 批准号:
    RGPIN-2014-04291
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Key Technologies towards an Engineer Centered Quantitative Design Methodology
开发以工程师为中心的定量设计方法的关键技术
  • 批准号:
    RGPIN-2014-04291
  • 财政年份:
    2015
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Key Technologies towards an Engineer Centered Quantitative Design Methodology
开发以工程师为中心的定量设计方法的关键技术
  • 批准号:
    RGPIN-2014-04291
  • 财政年份:
    2014
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic assembly plan optimization with both location and sequence variables
使用位置和顺序变量进行自动装配计划优化
  • 批准号:
    412445-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Process Optimization and Product Design for Metal Additive Manufacturing via Knowledge-Assisted Machine Learning
通过知识辅助机器学习进行金属增材制造的工艺优化和产品设计
  • 批准号:
    RGPIN-2019-06601
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Determination and Optimization of the Cabbage Fermentation Process to Produce a High-Quality Sauerkraut Product and Sustainable Sauerkraut Production within a Circular Economy
生产高质量酸菜产品的卷心菜发酵工艺的确定和优化以及循环经济中可持续的酸菜生产
  • 批准号:
    561202-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Applied Research and Development Grants - Level 1
Process Optimization and Product Design for Metal Additive Manufacturing via Knowledge-Assisted Machine Learning
通过知识辅助机器学习进行金属增材制造的工艺优化和产品设计
  • 批准号:
    RGPIN-2019-06601
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate measures of in-process wood pulp composition and morphology: smart sensors for real-time process control and fibre product optimization
过程中木浆成分和形态的多变量测量:用于实时过程控制和纤维产品优化的智能传感器
  • 批准号:
    494643-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Process Optimization and Product Design for Metal Additive Manufacturing via Knowledge-Assisted Machine Learning
通过知识辅助机器学习进行金属增材制造的工艺优化和产品设计
  • 批准号:
    RGPIN-2019-06601
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization and Automation of Kel-Gor's Manufacturing Process for Product Tracking
用于产品跟踪的 Kel-Gor 制造流程的优化和自动化
  • 批准号:
    545481-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Applied Research and Development Grants - Level 1
Multivariate measures of in-process wood pulp composition and morphology: smart sensors for real-time process control and fibre product optimization
过程中木浆成分和形态的多变量测量:用于实时过程控制和纤维产品优化的智能传感器
  • 批准号:
    494643-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Multivariate measures of in-process wood pulp composition and morphology: smart sensors for real-time process control and fibre product optimization
过程中木浆成分和形态的多变量测量:用于实时过程控制和纤维产品优化的智能传感器
  • 批准号:
    494643-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Lignin-Polymer Composite Materials: Production Process Optimization and Product Performance Evaluation
木质素-聚合物复合材料:生产工艺优化及产品性能评价
  • 批准号:
    536687-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Engage Plus Grants Program
TopoRestruct – Converting topology optimization results into a design geometry, which meets the requirements for manufacturability, functionality and mechanical stress in the product development process
TopoRestruct â 将拓扑优化结果转换为设计几何形状,满足产品开发过程中对可制造性、功能性和机械应力的要求
  • 批准号:
    411012054
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了