Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
基本信息
- 批准号:RGPIN-2017-05440
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Low-dimensional topology continues to draw on groundbreaking ideas of Floer. This has generated a vibrant sub-discipline; new structure is being uncovered and difficult problems are being solved. This activity comes alongside landmark achievements in geometric topology - e.g. Agol and Wise's resolution of the virtual Haken conjecture - highlighting successes of Thurston's program. My proposal is positioned at the nexus of these areas of activity, with a view to bridging between Thurston-style geometric topology and Floer-theoretic invariants in low-dimensions.
This research will draw on the fundamental group, working to uncover the interplay between left-orderable groups, taut foliations, and Floer homology. Interplay between these structures has generated a wealth of new research; the conjectured connection is now established for graph manifolds (see my work with Hanselman, Rasmussen and Rasmussen). This uses novel algebraic tools from bordered Floer homology, a variant of Heegaard Floer homology adapted to manifolds with boundary. I aim to bring these tools to bear on the role of hyperbolic structures in Floer theory.
Understanding the geometric underpinnings of Floer theory builds on questions of Ozsvth-Szab pertaining to relationships with the fundamental group. My work with Boyer and Gordon formulates a conjectural connection that has been a catalyst for new research activity on this problem. Reiterating this, the importance of making connections between geometric 3-manifold topology and Floer homology was singled out by Agol in his Veblen citation.
My work with Hanselman and Rasmussen recasts bordered invariants for manifolds with torus boundary in terms of immersed curves in the punctured torus. While this requires a mild hypothesis on the 3-manifold in question, our work aligns with that of Haiden-Katzarkov-Kontsevitch on Fukaya categories of surfaces. Our continued research aims to interpret this progress in homological mirror symmetry in our setting in order to establish new results in low-dimensions. This work points to interesting structure both for orderable groups and in foliation theory.
In a related vein, it is conjectured that there do not exist hyperbolic integer homology sphere L-spaces (manifolds with simplest possible Heegaard Floer homology). This is a key instance where an understanding of the relationship between hyperbolic 3-manifolds and Floer theory is required. I propose to approach this problem with mapping class groups of surfaces as a mediating object: bimodules in bordered Floer homology provide a faithful categorical representation of the mapping class group, while geometric limits in hyperbolic geometry suggest a search for stable properties of 3-manifolds associated with iterated mapping classes. This suggests new algebraic structures, and a program towards understanding the paucity of hyperbolic L-space integer homology spheres.
低维拓扑继续借鉴弗洛尔的开创性思想。这产生了一个充满活力的分支学科;新格局正在显现,难题正在解决。这一活动伴随着几何拓扑学的里程碑式成就——例如Agol和Wise对虚拟哈肯猜想的解决——突出了Thurston计划的成功。我的建议定位于这些活动领域的联系,以期在瑟斯顿风格的几何拓扑和低维的花理论不变量之间架起桥梁。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Watson, Liam其他文献
On the geography and botany of knot Floer homology
论结弗洛尔同源物的地理学和植物学
- DOI:
10.1007/s00029-017-0351-5 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hedden, Matthew;Watson, Liam - 通讯作者:
Watson, Liam
L-spaces, taut foliations, and graph manifolds
- DOI:
10.1112/s0010437x19007814 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:1.8
- 作者:
Hanselman, Jonathan;Rasmussen, Jacob;Watson, Liam - 通讯作者:
Watson, Liam
On L-spaces and left-orderable fundamental groups
- DOI:
10.1007/s00208-012-0852-7 - 发表时间:
2013-08-01 - 期刊:
- 影响因子:1.4
- 作者:
Boyer, Steven;Gordon, Cameron McA;Watson, Liam - 通讯作者:
Watson, Liam
Heegaard Floer homology for manifolds with torus boundary: properties and examples.
- DOI:
10.1112/plms.12473 - 发表时间:
2022-10 - 期刊:
- 影响因子:1.8
- 作者:
Hanselman, Jonathan;Rasmussen, Jacob;Watson, Liam - 通讯作者:
Watson, Liam
Cabling in terms of immersed curves
根据浸没曲线进行布线
- DOI:
10.2140/gt.2023.27.925 - 发表时间:
2023 - 期刊:
- 影响因子:2
- 作者:
Hanselman, Jonathan;Watson, Liam - 通讯作者:
Watson, Liam
Watson, Liam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Watson, Liam', 18)}}的其他基金
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
507943-2017 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
507943-2017 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
507943-2017 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
Rh-N4位点催化醇类氧化反应的微观机制与构效关系研究
- 批准号:22302208
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
体内亚核小体图谱的绘制及其调控机制研究
- 批准号:32000423
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CTCF/cohesin介导的染色质高级结构调控DNA双链断裂修复的分子机制研究
- 批准号:32000425
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
- 批准号:51973054
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
异染色质修饰通过调控三维基因组区室化影响机体应激反应的分子机制
- 批准号:31970585
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
骨髓间充质干细胞成骨成脂分化过程中染色质三维构象改变与转录调控分子机制研究
- 批准号:31960136
- 批准年份:2019
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
染色质三维结构等位效应的亲代传递研究
- 批准号:31970586
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
染色质三维构象新型调控因子的机制研究
- 批准号:31900431
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
转座因子调控多能干细胞染色质三维结构中的作用
- 批准号:31970589
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
磷酸化和可变剪切修饰影响Bnip3调控线粒体自噬和细胞凋亡的结构及功能研究
- 批准号:31670742
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
507943-2017 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Higher Structure in Low-Dimensional Floer Theories
低维Floor理论中的高级结构
- 批准号:
1810893 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Continuing Grant
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
507943-2017 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
507943-2017 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Structure of Low-Dimensional Floer Homologies
低维Floer同调结构
- 批准号:
0905796 - 财政年份:2009
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant














{{item.name}}会员




