Development of an integrated modeling framework for wind turbine health condition assessment
开发风力涡轮机健康状况评估的集成建模框架
基本信息
- 批准号:RGPIN-2017-04143
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Design and operation of wind power stations are guided by the “L3 conditions”, namely, low cost, long-lasting, and low service requirement. Not only do wind turbine components fail at higher rates because of their extreme operating conditions, the costs associated with the failure are also higher than other machinery systems due to the need for special equipment such as a large crane. Furthermore, wind turbines may not be accessible at times of extreme weather conditions, causing extended shutdown periods and loss of production. A reliable and automated machine health condition monitoring system can enable effective predictive maintenance practice and contribute directly to all three L's. Such a system should have the ability to detect faults, link them to root causes, and predict machine health state at future times.
In the general area of machine condition monitoring, solutions in fault diagnosis are becoming increasingly sophisticated with improved reliability in fault classification and robustness to operating and environmental condition variations. However, very few solutions exist that can determine root causes of faults or predict failure at the system level. These are the main reasons for the slow industry adoption of research and development results because mere detection of faults without actionable information, such as when and where failure will occur, does not necessarily translate to cost savings.
A system level model that includes component models based on underlying physical principles can provide the key to a solution with the much needed fault prediction capabilities. In this research program, we aim to establish an integrated wind turbine system model that can represent a digital copy of the actual system particularly in terms of its health condition. At any point of time, this model can indicate fault location and severity. It can be used to simulate the system's behavior as the result of fault progression in future times to enable failure prediction. It can also be used to analyze the effect of a localized fault on system's overall dynamics behavior and the well-being of other components to inform effective intervention. The successful delivery of the research outcome will represent a leap forward toward building an effective predictive maintenance solution for the wind energy and other industries.
风力发电站的设计和运行遵循“L3条件”,即低成本、持久和低服务要求。 风力涡轮机部件不仅由于其极端的操作条件而以更高的比率发生故障,而且由于需要诸如大型起重机的专用设备,与故障相关联的成本也高于其它机械系统。 此外,风力涡轮机在极端天气条件下可能无法接近,导致停机时间延长和生产损失。一个可靠的自动化机器健康状况监测系统可以实现有效的预测性维护实践,并直接有助于所有三个L。 这样的系统应该能够检测故障,将它们与根本原因联系起来,并预测未来的机器健康状态。
在机器状态监测的一般领域中,故障诊断的解决方案变得越来越复杂,故障分类的可靠性以及对操作和环境条件变化的鲁棒性得到提高。 然而,很少有解决方案可以确定故障的根本原因或预测系统级的故障。 这些是行业采用研究和开发成果缓慢的主要原因,因为仅仅检测故障而没有可操作的信息,例如何时何地发生故障,并不一定转化为成本节约。
包括基于底层物理原理的组件模型的系统级模型可以为具有急需的故障预测能力的解决方案提供关键。 在这项研究计划中,我们的目标是建立一个完整的风力涡轮机系统模型,可以代表一个数字拷贝的实际系统,特别是在其健康状况。 在任何时间点,该模型可以指示故障位置和严重性。它可以用来模拟系统的行为,作为未来故障发展的结果,以实现故障预测。 它还可以用于分析局部故障对系统整体动态行为和其他组件的健康的影响,以提供有效的干预。 研究成果的成功交付将代表着为风能和其他行业构建有效的预测性维护解决方案的飞跃。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sun, Qiao其他文献
Clinical Characteristics of Methanol-Induced Optic Neuropathy: Correlation between Aetiology and Clinical Findings.
甲醇引起的视神经病变的临床特征:病因与临床表现之间的相关性
- DOI:
10.1155/2022/4671671 - 发表时间:
2022 - 期刊:
- 影响因子:1.9
- 作者:
Sun, Qiao;Sun, Mingming;Zhang, Yuan;Wang, Song;Bai, Wenhao;Wei, Shihui;Xu, Quangang;Zhou, Huanfen - 通讯作者:
Zhou, Huanfen
Boron-rich boron nitride nanomaterials as efficient metal-free catalysts for converting CO2 into valuable fuel
富硼氮化硼纳米材料作为有效的无金属催化剂,将二氧化碳转化为有价值的燃料
- DOI:
10.1016/j.apsusc.2021.149652 - 发表时间:
2021-04-03 - 期刊:
- 影响因子:6.7
- 作者:
Qu, Mengnan;Qin, Gangqiang;Sun, Qiao - 通讯作者:
Sun, Qiao
Ultra-small fluorescent inorganic nanoparticles for bioimaging
- DOI:
10.1039/c3tb21760d - 发表时间:
2014-01-01 - 期刊:
- 影响因子:7
- 作者:
Li, Zhen;Sun, Qiao;Dou, Shi Xue - 通讯作者:
Dou, Shi Xue
A theoretical insight into a feasible strategy for the fabrication of borophane
对硼烷制造可行策略的理论见解
- DOI:
10.1039/c8cp01407h - 发表时间:
2018-06-21 - 期刊:
- 影响因子:3.3
- 作者:
Qin, Gangqiang;Du, Aijun;Sun, Qiao - 通讯作者:
Sun, Qiao
Ambient Aqueous Growth of Cu(2)Te Nanostructures with Excellent Electrocatalytic Activity toward Sulfide Redox Shuttles.
- DOI:
10.1002/advs.201500350 - 发表时间:
2016-05 - 期刊:
- 影响因子:15.1
- 作者:
Han, Chao;Bai, Yang;Sun, Qiao;Zhang, Shaohua;Li, Zhen;Wang, Lianzhou;Dou, Shixue - 通讯作者:
Dou, Shixue
Sun, Qiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sun, Qiao', 18)}}的其他基金
Towards building digital twins for prognostics and health management (PHM) of industrial assets
构建用于工业资产预测和健康管理 (PHM) 的数字孪生
- 批准号:
571334-2021 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Alliance Grants
Development of an integrated modeling framework for wind turbine health condition assessment
开发风力涡轮机健康状况评估的集成建模框架
- 批准号:
RGPIN-2017-04143 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Cybermentor Science Literacy Week
Cybermentor 科学素养周
- 批准号:
556103-2020 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
PromoScience Supplement for Science Literacy Week
Development of an integrated modeling framework for wind turbine health condition assessment
开发风力涡轮机健康状况评估的集成建模框架
- 批准号:
RGPIN-2017-04143 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Science Odyssey
科学奥德赛
- 批准号:
523469-2018 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
PromoScience Supplement for Science Odyssey
Development of an integrated modeling framework for wind turbine health condition assessment
开发风力涡轮机健康状况评估的集成建模框架
- 批准号:
RGPIN-2017-04143 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Development of an integrated modeling framework for wind turbine health condition assessment
开发风力涡轮机健康状况评估的集成建模框架
- 批准号:
RGPIN-2017-04143 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated)
行为和精细行为评价体系的构建
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
HER2特异性双抗原表位识别诊疗一体化探针研制与临床前诊疗效能研究
- 批准号:82372014
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
- 批准号:51008191
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Aeschi Model in Integrated Care: Treatment Development Study to Improve Outcomes for Suicidal Patients
综合护理中的阿埃斯基模型:改善自杀患者预后的治疗开发研究
- 批准号:
10575211 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Development of an Integrated Risk Prediction Model of Taxane-induced Peripheral Neuropathy
紫杉烷诱发的周围神经病变综合风险预测模型的开发
- 批准号:
10566077 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Development and Testing of an Integrated Care Coordination Intervention for Alcohol Use Disorder Recovery after Liver Transplantation
肝移植后酒精使用障碍康复综合护理协调干预措施的开发和测试
- 批准号:
10723316 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Development of a tele-mentoring system integrated into an ultra-portable surgical microscope to treat cataract in underserved populations
开发集成到超便携式手术显微镜中的远程指导系统,以治疗服务不足人群的白内障
- 批准号:
10602749 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Fundamental Biobehavioral Mechanisms Underlying the Integrated Development of Emotion, Attachment, and Nutritive Intake in the Mother-Infant Dyad
母婴二元情感、依恋和营养摄入综合发展的基本生物行为机制
- 批准号:
10583348 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Enhancing Early Relational Health to Reduce Disparities in Child Health and Development: Addressing ACEs and Promoting PCEs through an Integrated Evidence-based Intervention in Pediatric Primary Care
加强早期关系健康,减少儿童健康和发展方面的差异:通过儿科初级保健中的综合循证干预措施解决 ACE 问题并促进 PCE 问题
- 批准号:
10718071 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
- 批准号:
RGPIN-2020-05325 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Development of a comprehensive suite of research-backed, integrated educational tools to inspire, educate, train, and support academic entrepreneurs in the commercialization of university research.
开发一整套以研究为支持的综合教育工具,以激励、教育、培训和支持学术企业家将大学研究商业化。
- 批准号:
10547543 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Development of bio-integrated devices to enhance transplant survival for subcutaneous encapsulated cell therapies
开发生物集成设备以提高皮下封装细胞疗法的移植存活率
- 批准号:
10525644 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Development of bio-integrated devices to enhance transplant survival for subcutaneous encapsulated cell therapies
开发生物集成设备以提高皮下封装细胞疗法的移植存活率
- 批准号:
10634688 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别: