Arrangements of Hyperplanes and Combinatorial Constructions in Topology
拓扑中超平面的排列和组合构造
基本信息
- 批准号:RGPIN-2017-04759
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research involves interactions between combinatorics and techniques from areas of algebra, topology, and geometry.
Combinatorics is a branch of mathematics which sits at the foundation of computer science and operations research. It involves the study of discrete structures as well as of counting problems. Many interesting objects in other areas of mathematics are fundamentally combinatorial in nature, so methods of combinatorics appear naturally in understanding families of "test" objects such as toric varieties and hyperplane arrangements. These can be used as accessible examples to help identify and understand general mathematical phenomena.
In a different direction, the well-developed techniques of algebra and geometry can sometimes answer combinatorial questions and offer deep reasons for observed or conjectured behaviour of objects in discrete mathematics. For example, if the answer to a counting problem is a number which in itself shows no extra structure, one might find that this number is, in fact, some evaluation of a polynomial. Perhaps the polynomial has coefficients which themselves may be interpreted as volumes of certain polyhedra, or they count the number of high-dimensional "holes" in a geometric object which could be built from the original problem. In this way, one may obtain a better understanding of a combinatorial object, by viewing it as a shadow of something with much more structure and, one hopes, properties which are better known or at least more easily analyzed.
我的研究涉及组合学与代数、拓扑学和几何学领域的技术之间的相互作用。
组合数学是数学的一个分支,是计算机科学和运筹学的基础。 它涉及离散结构以及计数问题的研究。 在数学的其他领域中,许多有趣的对象本质上是组合的,因此组合学的方法自然地出现在理解“测试”对象的家庭中,如复曲面簇和超平面排列。 这些可以作为可访问的例子,以帮助识别和理解一般的数学现象。
在另一个方向上,代数和几何的成熟技术有时可以回答组合问题,并为离散数学中观察到的或确定的对象行为提供深层原因。 例如,如果一个计数问题的答案是一个本身没有额外结构的数,那么人们可能会发现这个数实际上是一个多项式的求值。 也许多项式的系数本身可以解释为某些多面体的体积,或者它们计算了可以从原始问题构建的几何对象中的高维“孔”的数量。 通过这种方式,人们可以更好地理解组合对象,将其视为具有更多结构的事物的影子,并且人们希望,更好地了解或至少更容易分析的属性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denham, Graham其他文献
Lagrangian geometry of matroids
拟阵的拉格朗日几何
- DOI:
10.1090/jams/1009 - 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Ardila, Federico;Denham, Graham;Huh, June - 通讯作者:
Huh, June
Lagrangian combinatorics of matroids
拟阵的拉格朗日组合
- DOI:
10.5802/alco.263 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ardila, Federico;Denham, Graham;Huh, June - 通讯作者:
Huh, June
Configuration polynomials under contact equivalence
接触等效下的配置多项式
- DOI:
10.4171/aihpd/154 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Denham, Graham;Pol, Delphine;Schulze, Mathias;Walther, Uli - 通讯作者:
Walther, Uli
Denham, Graham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Denham, Graham', 18)}}的其他基金
Arrangements of Hyperplanes and Combinatorial Constructions in Topology
拓扑中超平面的排列和组合构造
- 批准号:
RGPIN-2017-04759 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Hyperplanes and Combinatorial Constructions in Topology
拓扑中超平面的排列和组合构造
- 批准号:
RGPIN-2017-04759 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Hyperplanes and Combinatorial Constructions in Topology
拓扑中超平面的排列和组合构造
- 批准号:
RGPIN-2017-04759 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Hyperplanes and Combinatorial Constructions in Topology
拓扑中超平面的排列和组合构造
- 批准号:
RGPIN-2017-04759 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial constructions in geometry and topology
几何和拓扑中的组合构造
- 批准号:
249737-2012 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial constructions in geometry and topology
几何和拓扑中的组合构造
- 批准号:
249737-2012 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial constructions in geometry and topology
几何和拓扑中的组合构造
- 批准号:
249737-2012 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial constructions in geometry and topology
几何和拓扑中的组合构造
- 批准号:
249737-2012 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial constructions in geometry and topology
几何和拓扑中的组合构造
- 批准号:
249737-2012 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of hyperplanes and combinatorial constructions in topology
拓扑中超平面的排列和组合结构
- 批准号:
249737-2007 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Arrangements of Hyperplanes and Combinatorial Constructions in Topology
拓扑中超平面的排列和组合构造
- 批准号:
RGPIN-2017-04759 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Hyperplanes and Combinatorial Constructions in Topology
拓扑中超平面的排列和组合构造
- 批准号:
RGPIN-2017-04759 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Hyperplanes and Combinatorial Constructions in Topology
拓扑中超平面的排列和组合构造
- 批准号:
RGPIN-2017-04759 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of Hyperplanes and Combinatorial Constructions in Topology
拓扑中超平面的排列和组合构造
- 批准号:
RGPIN-2017-04759 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of hyperplanes and combinatorial constructions in topology
拓扑中超平面的排列和组合结构
- 批准号:
249737-2007 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of hyperplanes and combinatorial constructions in topology
拓扑中超平面的排列和组合结构
- 批准号:
249737-2007 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of hyperplanes and combinatorial constructions in topology
拓扑中超平面的排列和组合结构
- 批准号:
249737-2007 - 财政年份:2009
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of hyperplanes and combinatorial constructions in topology
拓扑中超平面的排列和组合结构
- 批准号:
249737-2007 - 财政年份:2008
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Arrangements of hyperplanes and combinatorial constructions in topology
拓扑中超平面的排列和组合结构
- 批准号:
249737-2007 - 财政年份:2007
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Sciences: Combinatorial Aspects of Dissections of n-Space by Hyperplanes
数学科学:超平面剖切 n 空间的组合方面
- 批准号:
8501948 - 财政年份:1985
- 资助金额:
$ 1.75万 - 项目类别:
Continuing grant