Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data

高维数据的集成子空间、惩罚、预测试和收缩策略

基本信息

  • 批准号:
    RGPIN-2017-05228
  • 负责人:
  • 金额:
    $ 3.13万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

There are a host of buzzwords in today's data-centric world. We encounter data in all walks of life, and for analytically- and objectively-minded people, data is crucial to their goals. Making sense of the data and extracting meaningful information from it may not be an easy task. The growth in the size and scope of data sets in a host of disciplines has created a need for innovative statistical strategies for understanding and analyzing such data. A variety of statistical and computational tools are needed to reveal the story that is contained in the data. We define high dimensional data (HDD) as data sets for which the number of predictors are larger than the sample size. The analysis of HDD is an important feature in a host of research fields such as social media, engineering networks, bio-informatics, environmental, and others. The buzzword “Big Data” is nebulously defined, but its problems are real and statisticians play a vital role in this data world. Undoubtedly, overcoming the challenges of HDD is key to successful research in a host of fields. Many organizations are using sophisticated number-crunching, data mining, or Big Data analytics to reveal patterns based on collected information. Clearly, there is an increasing demand for efficient prediction strategies for analyzing HDD. Some examples of HDD that have prompted demand are gene expression arrays, social network modeling, clinical, genetics and phenotypic data. Most of the exiting methods for dealing with HDD begin with model selection for further investigation. Penalized methods are unstable unless very stringent conditions are imposed. This research proposal in HDD focusses on post selection strategies to combat some of the issues inherited in penalized methods. We also propose to investigate ensemble strategy and tuning-parameter free strategy to analyze HDD. Further, I will consider model misspecification problems in HDD and provide a systematic analysis of pretest procedures via divergence theory. Finally, we will develop Bayesian methodology for brain imaging and genetic data. The overarching objective is to provide answers to the question “what are the tools and tricks, pitfalls, applications, challenges and opportunities in HDD analysis”. This proposal emphasizes that statisticians can play a dominant role in solving Big Data problems, and will move statisticians from the cellar of the scientific discovery to the penthouse. The proposed research will provide opportunities for training highly qualified personnel at all levels. The training will be three-fold, methodological, coding/computational, and analysis of data from the real life problems. More public and private sectors are now acknowledging the importance of statistical tools and its critical role in analyzing Big Data. According to a research 4 million jobs may be available globally for Big Data analysis. The proposed research will train individuals for these jobs.
在当今以数据为中心的世界中,有许多流行语。我们在各行各业的各行各业中都遇到数据,对于分析性和客观性的人,数据对他们的目标至关重要。了解数据并从中提取有意义的信息可能不是一件容易的事。许多学科中数据集的规模和范围的增长已经需要创新的统计策略来理解和分析此类数据。需要各种统计和计算工具来揭示数据中包含的故事。我们将高维数据(HDD)定义为预测变量数量大于样本量的数据集。 HDD的分析是社交媒体,工程网络,生物信息学,环境等许多研究领域的重要特征。流行语的“大数据”是明确定义的,但其问题是真实的,统计学家在这个数据世界中起着至关重要的作用。毫无疑问,克服HDD的挑战是在许多领域成功进行研究的关键。许多组织正在使用复杂的数字处理,数据挖掘或大数据分析来揭示基于收集的信息的模式。显然,对分析HDD的有效预测策略的需求不断增长。 HDD引起需求的一些示例是基因表达阵列,社交网络建模,临床,遗传学和表型数据。 处理HDD的大多数退出方法始于模型选择以进行进一步投资。除非施加非常严格的条件,否则惩罚方法是不稳定的。 HDD中的这项研究提案着重于后选择策略,以应对刑罚方法中继承的一些问题。我们还建议调查整体策略和无调参数策略,以分析HDD。此外,我将考虑模型在HDD中错误的问题,并通过Divergence理论对预测试程序进行系统分析。最后,我们将开发用于脑成像和遗传数据的贝叶斯方法。总体目的是为“ HDD分析中的工具,陷阱,应用,挑战和机遇”提供答案。 该提议强调,统计学家可以在解决大数据问题中发挥主导作用,并将统计学家从科学发现的地窖将其转移到顶层公寓。拟议的研究将为培训各个级别的高素质人员提供机会。培训将为方法,编码/计算三倍,并分析来自现实生活中的问题。现在,更多的公共部门和私营部门都承认统计工具的重要性及其在分析大数据中的关键作用。根据一项研究,全球可用于大数据分析的400万个工作岗位。拟议的研究将培训个人从事这些工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmed, Ejaz其他文献

Ionothermal Synthesis of Polyoxometalates
An Improved Deep Learning Architecture for Person Re-Identification
Antioxidant activity with flavonoidal constituents from Aerva persica
  • DOI:
    10.1007/bf02968582
  • 发表时间:
    2006-05-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Ahmed, Ejaz;Imran, Muhammad;Ashraf, Muhammad
  • 通讯作者:
    Ashraf, Muhammad
Analysis of Tinto's student integration theory in first-year undergraduate computing students of a UK higher education institution
SQL Database with physical database tuning technique and NoSQL graph database comparisons

Ahmed, Ejaz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmed, Ejaz', 18)}}的其他基金

Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
  • 批准号:
    RGPIN-2017-05228
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于成分转化-体内时空分布-空间代谢组学整体耦联阐释女贞子蒸制的科学内涵
  • 批准号:
    82374041
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
狄氏型的Fukushima子空间与扩张
  • 批准号:
    12371144
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
基于子空间操作的复杂间歇过程反馈优化控制方法研究
  • 批准号:
    62373147
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非交换对称空间的若干几何性质与导子问题
  • 批准号:
    12301160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于LAMOST-Gaia数据研究银河系相空间子结构的化学特征
  • 批准号:
    12373020
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似海外基金

Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
  • 批准号:
    RGPIN-2017-05228
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
  • 批准号:
    RGPIN-2017-05228
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
  • 批准号:
    RGPIN-2017-05228
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
  • 批准号:
    RGPIN-2017-05228
  • 财政年份:
    2018
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
  • 批准号:
    RGPIN-2017-05228
  • 财政年份:
    2017
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了