Next-generation ultralow-noise mechanical sensors defined and controlled by light
由光定义和控制的下一代超低噪声机械传感器
基本信息
- 批准号:RGPIN-2018-05635
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mechanical technologies are everywhere in society, from oscillators in timekeeping devices to accelerometers and electronic filters in automobiles and cell phones. They also represent an indispensable tool for fundamental and applied science: using tiny mechanical systems, it is possible to "feel around" surfaces at the atomic scale, detect chemical mass changes with single-proton resolution, and sense element-specific magnetic "tugs" from nanoscale clusters of nuclei (even creating a 3d map). In the field of optomechanics, we have learned to exploit the forces exerted by light to gain an unprecedented level of control over these systems at all size scales, leading to entirely new functionalities for next-generation sensors, including those in which the laws of quantum mechanics play a central role.
Our research aims to realise ultralow-noise micromechanical sensors that are reconfigured and controlled by light in unique ways. To this end, we fabricate delicate "micro-trampolines" exhibiting a world-record combination of force sensitivity and optical performance, such that the radiation force from an average of just one photon -- the smallest quantity of light allowed by nature -- will exert a profound influence over their mechanical trajectories. Here we propose to capitalise upon this breakthrough to demonstrate strong single-photon control, access quantum states of motion, and generate quantum "squeezed" light useful for enhancing interferometers (such as those used to detect gravitational waves). Additionally, by partially levitating related mechanical elements, we will even further enhance their sensitivities by essentially replacing their primary mechanical supports with light (a low-noise alternative to flexible materials). Finally, we will pursue a qualitatively new system in which light strongly controls the spatial distribution of oscillating mass: by optically perturbing a periodic structure ("phononic crystal"), we can smoothly tune the spatial extent of oscillating mass from the centimetre scale to the micron scale in situ -- a level of control that is currently unheard of. Furthermore, due to a collective enhancement effect, a larger device is predicted to exhibit a larger response to a given quantity of light (despite its larger mass) enabling a truly macroscopic response to single-photon light levels in a chip-scale device. In addition to creating new types of reconfigurable mechanical sensing technologies, these complementary efforts build toward fundamental studies of quantum motion at the macro scale, mechanical transduction of quantum information between a variety of "quantum bit" ("qubit") technologies and light (e.g., for long-distance quantum-secured communication), and the detection of zeptonewton forces (equivalent to the gravitational pull between two loaves of bread separated by 100 km).
机械技术在社会中无处不在,从计时设备中的振荡器到汽车和手机中的加速度计和电子滤波器。它们也代表了基础科学和应用科学不可或缺的工具:使用微小的机械系统,可以在原子尺度上“感受”表面,以单质子分辨率检测化学质量变化,并从纳米级原子核簇中感知元素特定的磁性“牵引”(甚至创建3d地图)。在光力学领域,我们已经学会了利用光施加的力,在所有尺寸范围内对这些系统进行前所未有的控制,从而为下一代传感器带来全新的功能,包括量子力学定律发挥核心作用的传感器。
我们的研究旨在实现超低噪声微机械传感器,这些传感器以独特的方式重新配置和控制。为此,我们制造了精致的“微型蹦床”,展示了世界纪录的力敏感性和光学性能的结合,这样,来自平均一个光子的辐射力-自然界允许的最小光量-将对其机械轨迹产生深远的影响。在这里,我们建议利用这一突破来展示强大的单光子控制,访问量子运动状态,并产生可用于增强干涉仪(例如用于检测引力波的干涉仪)的量子“压缩”光。此外,通过部分悬浮相关的机械元件,我们将进一步提高它们的灵敏度,基本上用光代替它们的主要机械支撑(柔性材料的低噪音替代品)。最后,我们将追求一个质的新系统,其中光强烈地控制振荡质量的空间分布:通过光学扰动周期性结构(“声子晶体”),我们可以在原位将振荡质量的空间范围从厘米尺度平滑地调整到微米尺度-这是目前闻所未闻的控制水平。此外,由于集体增强效应,预计较大的器件对给定量的光(尽管其质量较大)表现出较大的响应,从而能够对芯片级器件中的单光子光水平产生真正的宏观响应。除了创造新型的可重构机械感测技术之外,这些互补的努力还建立在宏观尺度上的量子运动的基础研究、各种“量子比特”(“qubit”)技术与光(例如,用于长距离量子保密通信),以及探测zeptonewton力(相当于相隔100公里的两条面包之间的引力)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sankey(Childress), Jack其他文献
Sankey(Childress), Jack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sankey(Childress), Jack', 18)}}的其他基金
Next-generation ultralow-noise mechanical sensors defined and controlled by light
由光定义和控制的下一代超低噪声机械传感器
- 批准号:
RGPIN-2018-05635 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Fiber Mirror Facility Upgrade for Quantum Optics and Sensing
量子光学和传感光纤镜设施升级
- 批准号:
RTI-2022-00470 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Research Tools and Instruments
Next-generation ultralow-noise mechanical sensors defined and controlled by light
由光定义和控制的下一代超低噪声机械传感器
- 批准号:
RGPIN-2018-05635 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Next-generation ultralow-noise mechanical sensors defined and controlled by light
由光定义和控制的下一代超低噪声机械传感器
- 批准号:
RGPIN-2018-05635 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
- 批准号:30470495
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
- 批准号:
2347575 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Cooperative Agreement
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
- 批准号:
2340973 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
- 批准号:
DP240101322 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Projects