Superhydrophobicity, drag reduction and microfluidic flow

超疏水性、减阻和微流体流动

基本信息

  • 批准号:
    RGPIN-2017-05767
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The flow of microfilms and liquids in microdevices, with thickness on the order of microns or smaller, is strongly influenced by the hydrodynamic characteristics at the solid-liquid interface. The aim of our research is to clarify the connection between the hydrophobicity (lack of wettability) of the solid surface and microfluidic flow, and elucidate the mechanism of drag reduction resulting from slip. Three different configurations will be examined theoretically, with close guidance from experiment. Given its fundamental importance and close connection to thin films, general boundary-layer (BL) flow will be explored first in some depth. Contrary to adhering liquid flow, the BL flow of slipping liquid is non-similar in character, and therefore much more difficult to treat. The flow of a jet impinging on a horizontal plate and hydraulic jump will be studied next, as extensive experimental work has been performed for smooth and corrugated plates. Finally, microchannel flow and micro-jet flow will be examined near the channel exit. As microfluidic devices are widely used, there is growing need to understand the intricate interaction between the solid surface and the flowing fluid. Fluid-surface parings are developed that can achieve slip lengths on the order of micrometers rather than nanometers. The volume flow rate can be significantly enhanced if the slip length is on the order of the channel gap width, leading to significant reduction in drag. Recent studies have focused on quantifying the magnitude of the slip length and its dependence on parameters such as wettability and surface roughness. One of our main objectives is to assess the influence of slip on drag reduction in BL and channel flows. We will examine how Superhydrophobic surfaces (SHSs) can be used to reduce drag in laminar flows. The hydrophobicity of the microscale surface roughness prevents the liquid from moving into the space between the peaks of the surface roughness, resulting in a gas-liquid interface supported by the posts. Consequently, in flows over SHSs, the fluid in contact with the solid posts experiences no slip, but the gas-liquid interfaces supported between the micro- or nanofeatures are essentially shear-free. We intend to adopt a two-phase (gas-liquid) model to mimic the flow over such SHSs. Much effort is invested towards the use of SHSs to engineer large slip to reduce drag. These surfaces enhance the mobility of drops by reducing their contact-angle hysteresis by supporting a shear-free gas-liquid interface over which liquid slips. In laminar flows, the use of SHSs represents one of the first technologies capable of reducing drag in devices that are larger than the molecular scale. The development of these surfaces could profoundly affect a variety of important existing technologies, from microfluidic devices to marine vessels. We study the flow on SHSs over a broad range of fluid applications.
微薄膜和液体在微器件中的流动,具有微米或更小的厚度,强烈地受到固液界面处的流体动力学特性的影响。我们的研究的目的是澄清之间的连接的疏水性(缺乏润湿性)的固体表面和微流体流动,并阐明减阻的机制,导致滑移。三种不同的配置将在理论上进行检查,并从实验密切指导。鉴于其基本的重要性和密切联系的薄膜,一般边界层(BL)流动将首先探讨在一定程度上的深度。相反,粘附液体流动,滑移液体的BL流是不相似的性质,因此更难以治疗。射流冲击水平板和水跃的流动将研究下一步,作为广泛的实验工作已经进行了光滑和波纹板。最后,微通道流动和微射流将检查附近的通道出口。 随着微流体器件的广泛应用,越来越需要了解固体表面和流动流体之间的复杂相互作用。流体表面配对的发展,可以实现微米而不是纳米量级的滑移长度。如果滑移长度是通道间隙宽度的数量级,则体积流率可以显著提高,从而导致阻力的显著减小。最近的研究集中在量化的滑移长度的大小和它的依赖参数,如润湿性和表面粗糙度。我们的主要目标之一是评估滑移对BL和槽道流中减阻的影响。 我们将研究如何超疏水表面(SHS)可以用来减少层流中的阻力。微尺度表面粗糙度的疏水性防止液体移动到表面粗糙度的峰之间的空间中,导致由柱支撑的气液界面。因此,在SHS上的流动中,与固体柱接触的流体不经历滑动,但是支撑在微米或纳米特征之间的气-液界面基本上是无剪切的。我们打算采用两相(气液)模型来模拟这种SHS的流动。 人们投入了大量的精力来使用SHS来设计大滑移以减少阻力。这些表面通过支撑液体在其上滑动的无剪切气-液界面来减少液滴的接触角滞后,从而增强液滴的流动性。在层流中,SHS的使用代表了能够在大于分子尺度的装置中减少阻力的首批技术之一。这些表面的发展可能会深刻影响各种重要的现有技术,从微流体设备到海洋船舶。我们研究了SHS在广泛的流体应用中的流动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khayat, Roger其他文献

Khayat, Roger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khayat, Roger', 18)}}的其他基金

Superhydrophobicity, drag reduction and microfluidic flow
超疏水性、减阻和微流体流动
  • 批准号:
    RGPIN-2017-05767
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Superhydrophobicity, drag reduction and microfluidic flow
超疏水性、减阻和微流体流动
  • 批准号:
    RGPIN-2017-05767
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Superhydrophobicity, drag reduction and microfluidic flow
超疏水性、减阻和微流体流动
  • 批准号:
    RGPIN-2017-05767
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Superhydrophobicity, drag reduction and microfluidic flow
超疏水性、减阻和微流体流动
  • 批准号:
    RGPIN-2017-05767
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Thermal convection of nanofluids
纳米流体的热对流
  • 批准号:
    205002-2011
  • 财政年份:
    2016
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Thermal convection of nanofluids
纳米流体的热对流
  • 批准号:
    205002-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Thermal convection of nanofluids
纳米流体的热对流
  • 批准号:
    205002-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Thermal convection of nanofluids
纳米流体的热对流
  • 批准号:
    205002-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Thermal convection of nanofluids
纳米流体的热对流
  • 批准号:
    205002-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear transient high-speed non-Newtonian flow of thin films
薄膜的非线性瞬态高速非牛顿流动
  • 批准号:
    205002-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

超稳定Drag-free卫星编队动力学建模与控制研究
  • 批准号:
    11002040
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
蒸汽爆炸中膜态沸腾条件下高温颗粒周围流体的热动力特性研究
  • 批准号:
    50376036
  • 批准年份:
    2003
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Effect of Reynolds number on drag reduction: from near-wall cycle to large-scale motions.
雷诺数对减阻的影响:从近壁循环到大规模运动。
  • 批准号:
    2345157
  • 财政年份:
    2024
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Standard Grant
Saving energy via drag reduction: a mathematical description of oscillatory flows
通过减阻节能:振荡流的数学描述
  • 批准号:
    EP/W021099/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Research Grant
Study on turbulent drag reduction by longitudinal vortex suppression control using an acoustic streaming type flow field control device
声流式流场控制装置纵向涡抑制控制湍流减阻研究
  • 批准号:
    23H01629
  • 财政年份:
    2023
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Experimental Assessment of Drag Reduction Associated with Structured Surfaces
与结构化表面相关的减阻实验评估
  • 批准号:
    574531-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    University Undergraduate Student Research Awards
Utilising a Naturally Occurring Drag Reduction Method
利用自然发生的减阻方法
  • 批准号:
    EP/V006614/2
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Research Grant
Aero Truck - Enabling new propulsion systems via drag reduction
航空卡车 - 通过减阻启用新的推进系统
  • 批准号:
    10042854
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant for R&D
Aerodynamic drag reduction, from science to control strategies in aerospace and sport
空气动力减阻,从科学到航空航天和体育运动的控制策略
  • 批准号:
    RGPIN-2018-05860
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Testing of the drag reduction mechanism of skinsuit materials for design
设计用紧身衣材料的减阻机理测试
  • 批准号:
    560894-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Alliance Grants
Nanobubble-enhanced drag and fouling reduction on lubricant infused surfaces
纳米气泡增强了润滑剂注入表面的阻力和污垢减少
  • 批准号:
    571752-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Alliance Grants
Innovative Drag Reduction Technology using 3-D Effect of Gas-Liquid Two-Phase Turbulent Boundary Layers
利用气液两相湍流边界层3D效应的创新减阻技术
  • 批准号:
    21J11854
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了