Structure and Mechanical properties of Collagen fibrils
胶原原纤维的结构和机械性能
基本信息
- 批准号:RGPIN-2018-03781
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Collagen is the protein building block of most mammalian tissues such as tendon, arteries, skin and bone. It is often sourced from various animal tissues and used in a wide array of medical and cosmetic applications such as skin fillers, wound dressing, and guided tissue regeneration. In its crudest extracted form, collagen is the main component of gelatin: a hydrogel used mostly as a food ingredient and as a nonmedicinal ingredient in drugs and nutritional complements.
Within our body, collagen forms fibrils, long cables with a diameter in the range of one thousandth of a human hair. Collagen fibrils give our tendons tensile properties comparable to the strongest man-made polymer materials. The assembly of collagen fibrils is a spontaneous process that cells tightly control to achieve a specific structural-mechanical relationship for each tissue. For example, tendons are typically split into two broad classes, the positional ones that are responsible for precise bone positioning such as in the hand, and the energy-storing ones like the Achilles at the heel of the foot that store elastic energy during movement. It is already established that these two types of tendons have different tensile properties. We recently demonstrated, using an atomic force microscopy based approach, that the same dichotomy is true at the collagen fibril level.
This unexpected finding offers the opportunity to contrast the structural-mechanical relationships of the two types of fibrils. This is a challenging task that requires sensitive structural probes at the single fibril level compatible with tensile testing techniques at the same scale. To this end, I have assembled a strong team of students and collaborators, and identified three promising techniques: atomic force microscopy for single fibril imaging, spectroscopy and manipulation; nanoscale X-ray diffraction for probing molecular packing at high spatial resolution; and second harmonic generation microscopy for time-resolved studies. We will combine these cutting-edge approaches with theoretical models inspired from soft-matter physics concepts to provide a complete picture of how the structure of collagen fibrils extracted from the two different types of tendon, positional versus energy-storing, changes during stretch and ultimately fails.
Our findings will have applications in the biomedical field where novel treatments of tendon injuries, as well as other soft-tissue trauma, could benefit from understanding the molecular nature and determinants of mechanical damage in collagen fibrils. To that end, I already have contacts with the Nova Scotia Tissue Bank to ensure timely translation of the research to clinicians. Another potential area of application is in the design and production of biodegradable, high performance textiles based on proteins.
胶原蛋白是大多数哺乳动物组织的蛋白质构成块,如肌腱、动脉、皮肤和骨骼。它通常来自各种动物组织,并用于广泛的医疗和美容应用,如皮肤填充物、伤口敷料和引导组织再生。在其最粗略的提取形式中,胶原蛋白是明胶的主要成分:一种主要用作食品成分的水凝胶,也是药物和营养补充剂中的非药用成分。
在我们的体内,胶原蛋白形成纤维,即直径在人类头发千分之一范围内的长电缆。胶原纤维使我们的肌腱具有与最强的人造聚合物材料相媲美的拉伸性能。胶原蛋白纤维的组装是一个自发的过程,细胞严格控制,以实现每个组织特定的结构-机械关系。例如,肌腱通常分为两大类,一类是位置肌腱,负责精确的骨骼定位,如手部;另一类是储存能量的肌腱,如脚后跟的跟腱,它在运动时储存弹性能量。已经确定,这两种类型的肌腱具有不同的拉伸性能。我们最近使用基于原子力显微镜的方法证明了同样的二分法在胶原纤维水平也是正确的。
这一意想不到的发现为对比这两种类型的纤维的结构-力学关系提供了机会。这是一项具有挑战性的任务,需要与相同规模的拉伸测试技术兼容的单纤维水平的敏感结构探头。为此,我组建了一个由学生和合作者组成的强大团队,并确定了三种很有前途的技术:原子力显微镜用于单纤维成像、光谱分析和操纵;纳米级X射线衍射用于高空间分辨率探测分子堆积;二次谐波产生显微镜用于时间分辨研究。我们将把这些尖端的方法与受到软物质物理概念启发的理论模型结合起来,提供从两种不同类型的肌腱中提取的胶原原纤维的结构是如何在拉伸过程中变化并最终失效的完整图景。
我们的发现将在生物医学领域得到应用,肌腱损伤以及其他软组织损伤的新治疗方法可以从了解胶原纤维中机械损伤的分子性质和决定因素中受益。为此,我已经与新斯科舍组织银行联系,以确保将研究及时翻译给临床医生。另一个潜在的应用领域是基于蛋白质的可生物降解高性能纺织品的设计和生产。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
kreplak, laurent其他文献
kreplak, laurent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('kreplak, laurent', 18)}}的其他基金
Structure and Mechanical properties of Collagen fibrils
胶原原纤维的结构和机械性能
- 批准号:
RGPIN-2018-03781 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Structure and Mechanical properties of Collagen fibrils
胶原原纤维的结构和机械性能
- 批准号:
RGPIN-2018-03781 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Structure and Mechanical properties of Collagen fibrils
胶原原纤维的结构和机械性能
- 批准号:
RGPIN-2018-03781 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Design hierarchical structure of mixed carrageenan gels for controlling mechanical properties
设计混合卡拉胶凝胶的分层结构以控制机械性能
- 批准号:
23K12678 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding the effect of hierarchical structure on mechanical properties of wood using a pretreatment technique
使用预处理技术了解分层结构对木材机械性能的影响
- 批准号:
23H02272 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
- 批准号:
545643-2020 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Postdoctoral Fellowships
Phase field collagen fibrils: modelling mechanical properties and structure of collagen fibrils
相场胶原原纤维:模拟胶原原纤维的机械特性和结构
- 批准号:
534448-2019 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Postgraduate Scholarships - Doctoral
Structure and Mechanical properties of Collagen fibrils
胶原原纤维的结构和机械性能
- 批准号:
RGPIN-2018-03781 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Structure, dynamics and mechanical properties of phytoglycogen nanoparticles: new insights into a novel sustainable nanomaterial
植物糖原纳米颗粒的结构、动力学和机械特性:对新型可持续纳米材料的新见解
- 批准号:
RGPIN-2019-05004 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Micromechanics of fine grained soil: Quantification of its mesoscale structure and mechanical properties
细粒土的微观力学:其介观结构和力学性能的量化
- 批准号:
21H01422 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
- 批准号:
545643-2020 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Postdoctoral Fellowships
Structure and Mechanical properties of Collagen fibrils
胶原原纤维的结构和机械性能
- 批准号:
RGPIN-2018-03781 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Phase field collagen fibrils: modelling mechanical properties and structure of collagen fibrils
相场胶原原纤维:模拟胶原原纤维的机械特性和结构
- 批准号:
534448-2019 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Postgraduate Scholarships - Doctoral