Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
基本信息
- 批准号:RGPIN-2018-04557
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rechargeable batteries are an excellent form of energy storage. Particularly, Lithium based batteries have been widely adopted in electric vehicles, portable electronic equipment, household appliances, power tools, aerospace equipment and renewable energy storage systems. A battery management system (BMS), consisting of a battery fuel gauge, cell balancing circuitry, and optimal charging algorithm, is essential for the safe, reliable and efficient operation of a battery pack. The BMS uses three non-invasive measurements from the battery, voltage, current and temperature, to estimate the state of charge (SOC) and state of health (SOH); these estimates are used in BMS functions, such as the generation of optimal charging waveforms, cell balancing, and to activate safety protectors.
Today's BMS technology is inadequate to accurately predict the SOH of a battery; as a result, the choices are either to prematurely replace the battery or to wait until a failure event occurs. Both of these choices have undesirable consequences: premature replacement will result in increased cost to the end user and excessive waste to the environment; waiting out will negatively impact the safety and quality of experience of the end user. Further, the state of the art BMS is constrained to particular chemistry, manufacturer, and size of the battery to which it is characterized for, i.e., the present-day BMS is not universal; this restricts battery selection and results in increased cost; also, such a restrictive BMS doesn't allow one to repurpose old/new battery packs. In addition, custom battery chargers generate excessive electronic clutter and environmental waste.
The proposed research has two immediate goals. The first one is to discover a unique measurement index to accurately estimate SOH; for this, we will employ machine learning algorithms to study thousands of observations to identify succinct features that are accurate indicators of SOH. The second goal is to develop the necessary algorithmic foundations of a universal BMS that is independent of the chemical composition, manufacturer, size, and age of the battery; we will make use of the power of cloud computing and information fusion algorithms to achieve this goal. Some outcome of this research will help to improve optimal battery charging algorithms to reduce charging time without affecting SOH. The long-term objective of this research is to develop an autonomous BMS that provides the end user with efficiency, flexibility, and safety and enables them to use rechargeable batteries in uniquely creative ways to store and use renewable energy.
可充电电池是一种极好的能源存储形式。特别是,基于锂的电池已在电动汽车,便携式电子设备,家用电器,电动工具,航空设备和可再生能源存储系统中广泛采用。电池管理系统(BMS),由电池燃油表,电池平衡电路和最佳充电算法组成,对于电池组的安全,可靠和高效的操作至关重要。 BMS使用电池,电压,电流和温度的三项非侵入性测量来估计充电状态(SOC)和健康状况(SOH);这些估计值用于BMS功能,例如产生最佳充电波形,平衡和激活安全保护器。
当今的BMS技术不足以准确预测电池的SOH。结果,选择要么过早更换电池,要么等到发生故障事件。这两种选择都有不良后果:过早的替换将导致最终用户的成本增加,并使环境过多浪费;等待将对最终用户的经验的安全性和质量产生负面影响。此外,最先进的BMS的状态限制在特定的化学,制造商和其特征的电池的大小上,即当今的BMS并非通用;这限制了电池的选择并导致成本增加;另外,这种限制性的BMS不允许重新利用旧/新电池组。此外,定制电池充电器会产生过多的电子混乱和环境废物。
拟议的研究有两个直接的目标。第一个是发现一个独特的测量指数,以准确估计SOH。为此,我们将采用机器学习算法来研究数千个观测值,以确定精确指标的简洁特征。第二个目标是开发通用BMS的必要算法基础,该基础与电池的化学成分,制造商,尺寸和年龄无关。我们将利用云计算和信息融合算法的力量来实现此目标。这项研究的一些结果将有助于改善最佳的电池充电算法,以减少充电时间而不会影响SOH。这项研究的长期目标是开发自主BMS,为最终用户提供效率,灵活性和安全性,并使他们能够以独特的创新方式使用可充电电池来存储和使用可再生能源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Balasingam, Balakumar其他文献
On the Cost of Detection Response Task Performance on Cognitive Load
- DOI:
10.1177/0018720820931628 - 发表时间:
2020-06-17 - 期刊:
- 影响因子:3.3
- 作者:
Biondi, Francesco N.;Balasingam, Balakumar;Ayare, Prathamesh - 通讯作者:
Ayare, Prathamesh
Distracted worker: Using pupil size and blink rate to detect cognitive load during manufacturing tasks
- DOI:
10.1016/j.apergo.2022.103867 - 发表时间:
2022-08-12 - 期刊:
- 影响因子:3.2
- 作者:
Biondi, Francesco N.;Saberi, Babak;Balasingam, Balakumar - 通讯作者:
Balasingam, Balakumar
Reading Line Classification Using Eye-Trackers
- DOI:
10.1109/tim.2021.3094817 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:5.6
- 作者:
Sun, Xiaohao;Balasingam, Balakumar - 通讯作者:
Balasingam, Balakumar
Robust Approach to Battery Equivalent-Circuit-Model Parameter Extraction Using Electrochemical Impedance Spectroscopy
- DOI:
10.3390/en15239251 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:3.2
- 作者:
Abaspour, Marzia;Pattipati, Krishna R. R.;Balasingam, Balakumar - 通讯作者:
Balasingam, Balakumar
A scaling approach for improved state of charge representation in rechargeable batteries
- DOI:
10.1016/j.apenergy.2020.114880 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:11.2
- 作者:
Ahmed, Mostafa Shaban;Raihan, Sheikh Arif;Balasingam, Balakumar - 通讯作者:
Balasingam, Balakumar
Balasingam, Balakumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Balasingam, Balakumar', 18)}}的其他基金
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
RGPIN-2018-04557 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Novel solutions for battery thermal management and battery reuse
电池热管理和电池再利用的新颖解决方案
- 批准号:
561015-2020 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
RGPIN-2018-04557 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
RGPIN-2018-04557 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
RGPIN-2018-04557 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
DGECR-2018-00301 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
新能源汽车废旧动力电池循环供应链运营管理与优化
- 批准号:72310107003
- 批准年份:2023
- 资助金额:190 万元
- 项目类别:国际(地区)合作与交流项目
相变储能材料在电池热管理应用中的热质传递调控机理
- 批准号:52311530086
- 批准年份:2023
- 资助金额:10.00 万元
- 项目类别:国际(地区)合作研究与交流项目
智能电池管理系统模态随动状态估计和形式化协同均衡研究
- 批准号:52377221
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于电-热-力多物理特征的多/全电飞机锂离子电池系统状态监测及智能管理方法
- 批准号:52302480
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于热电效应的电池热管理系统多场耦合机理与热电协同控制研究
- 批准号:52306017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
RGPIN-2018-04557 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
RGPIN-2018-04557 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Drone Swarm for Unmanned Inspection of Wind Turbines (Dr-SUIT): Battery Health Management, Hybrid Comms Systems and Operational Platform for Autonomous Offshore Windfarm Inspection
用于风力涡轮机无人检查的无人机群 (Dr-SUIT):电池健康管理、混合通信系统和自主海上风电场检查操作平台
- 批准号:
75238 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative R&D
CRII: CSR: Energy-Aware Coordination and Management of Multi-Purpose Autonomous Robots for Maintained Continuity of Operations and Long Battery Lifetime.
CRII:CSR:多用途自主机器人的能源感知协调和管理,以保持操作的连续性和较长的电池寿命。
- 批准号:
1948365 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
RGPIN-2018-04557 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual