Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
基本信息
- 批准号:RGPIN-2018-04557
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rechargeable batteries are an excellent form of energy storage. Particularly, Lithium based batteries have been widely adopted in electric vehicles, portable electronic equipment, household appliances, power tools, aerospace equipment and renewable energy storage systems. A battery management system (BMS), consisting of a battery fuel gauge, cell balancing circuitry, and optimal charging algorithm, is essential for the safe, reliable and efficient operation of a battery pack. The BMS uses three non-invasive measurements from the battery, voltage, current and temperature, to estimate the state of charge (SOC) and state of health (SOH); these estimates are used in BMS functions, such as the generation of optimal charging waveforms, cell balancing, and to activate safety protectors. ******Today's BMS technology is inadequate to accurately predict the SOH of a battery; as a result, the choices are either to prematurely replace the battery or to wait until a failure event occurs. Both of these choices have undesirable consequences: premature replacement will result in increased cost to the end user and excessive waste to the environment; waiting out will negatively impact the safety and quality of experience of the end user. Further, the state of the art BMS is constrained to particular chemistry, manufacturer, and size of the battery to which it is characterized for, i.e., the present-day BMS is not universal; this restricts battery selection and results in increased cost; also, such a restrictive BMS doesn't allow one to repurpose old/new battery packs. In addition, custom battery chargers generate excessive electronic clutter and environmental waste. ******The proposed research has two immediate goals. The first one is to discover a unique measurement index to accurately estimate SOH; for this, we will employ machine learning algorithms to study thousands of observations to identify succinct features that are accurate indicators of SOH. The second goal is to develop the necessary algorithmic foundations of a universal BMS that is independent of the chemical composition, manufacturer, size, and age of the battery; we will make use of the power of cloud computing and information fusion algorithms to achieve this goal. Some outcome of this research will help to improve optimal battery charging algorithms to reduce charging time without affecting SOH. The long-term objective of this research is to develop an autonomous BMS that provides the end user with efficiency, flexibility, and safety and enables them to use rechargeable batteries in uniquely creative ways to store and use renewable energy.
可充电电池是一种很好的能量存储形式。特别是,锂基电池已广泛应用于电动汽车、便携式电子设备、家用电器、电动工具、航空航天设备和可再生能源存储系统。电池管理系统(BMS)由电池电量计、电池平衡电路和最佳充电算法组成,对于电池组的安全、可靠和高效运行至关重要。BMS使用来自电池的三个非侵入性测量值(电压、电流和温度)来估计荷电状态(SOC)和健康状态(SOH);这些估计值用于BMS功能,例如生成最佳充电波形、电池平衡以及激活安全保护器。** 目前的BMS技术不足以准确预测电池的SOH;因此,选择要么过早更换电池,要么等到故障事件发生。这两种选择都有不良后果:过早更换将导致最终用户的成本增加和对环境的过度浪费;等待将对最终用户的安全和体验质量产生负面影响。此外,现有技术的BMS受限于其所表征的电池的特定化学、制造商和尺寸,即,目前的BMS不是通用的;这限制了电池的选择并导致成本增加;而且,这种限制性的BMS不允许人们重新使用旧的/新的电池组。此外,定制电池充电器会产生过多的电子垃圾和环境浪费。* *第一个是发现一个独特的测量指标来准确估计SOH;为此,我们将使用机器学习算法来研究数千个观察结果,以识别作为SOH准确指标的简洁特征。第二个目标是开发通用BMS的必要算法基础,该BMS独立于电池的化学成分,制造商,尺寸和年龄;我们将利用云计算和信息融合算法的力量来实现这一目标。这项研究的一些成果将有助于改善最佳的电池充电算法,以减少充电时间,而不影响SOH。这项研究的长期目标是开发一种自主BMS,为最终用户提供效率,灵活性和安全性,并使他们能够以独特的创造性方式使用可充电电池来存储和使用可再生能源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Balasingam, Balakumar其他文献
On the Cost of Detection Response Task Performance on Cognitive Load
- DOI:
10.1177/0018720820931628 - 发表时间:
2020-06-17 - 期刊:
- 影响因子:3.3
- 作者:
Biondi, Francesco N.;Balasingam, Balakumar;Ayare, Prathamesh - 通讯作者:
Ayare, Prathamesh
Distracted worker: Using pupil size and blink rate to detect cognitive load during manufacturing tasks
- DOI:
10.1016/j.apergo.2022.103867 - 发表时间:
2022-08-12 - 期刊:
- 影响因子:3.2
- 作者:
Biondi, Francesco N.;Saberi, Babak;Balasingam, Balakumar - 通讯作者:
Balasingam, Balakumar
Reading Line Classification Using Eye-Trackers
- DOI:
10.1109/tim.2021.3094817 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:5.6
- 作者:
Sun, Xiaohao;Balasingam, Balakumar - 通讯作者:
Balasingam, Balakumar
A scaling approach for improved state of charge representation in rechargeable batteries
- DOI:
10.1016/j.apenergy.2020.114880 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:11.2
- 作者:
Ahmed, Mostafa Shaban;Raihan, Sheikh Arif;Balasingam, Balakumar - 通讯作者:
Balasingam, Balakumar
Battery Management Systems-Challenges and Some Solutions
- DOI:
10.3390/en13112825 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:3.2
- 作者:
Balasingam, Balakumar;Ahmed, Mostafa;Pattipati, Krishna - 通讯作者:
Pattipati, Krishna
Balasingam, Balakumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Balasingam, Balakumar', 18)}}的其他基金
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
RGPIN-2018-04557 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Novel solutions for battery thermal management and battery reuse
电池热管理和电池再利用的新颖解决方案
- 批准号:
561015-2020 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
RGPIN-2018-04557 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
RGPIN-2018-04557 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
RGPIN-2018-04557 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Battery Management System (AutoBMS)
自主电池管理系统(AutoBMS)
- 批准号:
DGECR-2018-00301 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
相似海外基金
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Spatiotemporal Modeling of Lithium-ion Battery Packs for Electric Vehicle Battery Management Systems
RII Track-4:NSF:电动汽车电池管理系统锂离子电池组的时空建模
- 批准号:
2327409 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
NEXT GENERATION BATTERY MANAGEMENT SYSTEM BASED ON DATA RICH DIGITAL TWIN
基于数据丰富的数字孪生的下一代电池管理系统
- 批准号:
10069742 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
EU-Funded
ENERGETIC: Next Generation Battery Management System Based on Data Rich Digital Twin
ENERGETIC:基于数据丰富的数字孪生的下一代电池管理系统
- 批准号:
10080396 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
EU-Funded
In operando calibration of printed battery management sensors
印刷电池管理传感器的操作校准
- 批准号:
10073327 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative R&D
High power battery characterization for parameterization of battery management systems
用于电池管理系统参数化的高功率电池表征
- 批准号:
578447-2022 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants
I-Corps: Data-Driven Robust Optimization Technology for Battery Storage System Management
I-Corps:数据驱动的电池存储系统管理鲁棒优化技术
- 批准号:
2222450 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
GOALI: Direct Immersion Cooling for Battery Thermal Management
GOALI:用于电池热管理的直接浸入式冷却
- 批准号:
2143043 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
I-Corps: A Life-Prolonging Management System for Lithium-Sulfur Battery Packs
I-Corps:锂硫电池组的延长寿命管理系统
- 批准号:
2219940 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Battery Management System and Active Thermal Control of Aircraft Batteries for Aerospace Applications in Cold Temperature
低温下航空航天应用的电池管理系统和飞机电池主动热控制
- 批准号:
560762-2020 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Alliance Grants