Semiparametric Statistical (Machine) Learning

半参数统计(机器)学习

基本信息

  • 批准号:
    RGPIN-2018-04868
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Background Statistical learning algorithms (SLAs) are processes that are used worldwide as modern methods for predicting results from complex relationships. SLAs learn from a set of data consisting of a response (the target for prediction) and one or more explanatory variables (the inputs). The learning consists of minimizing the lossa distance between the predictions and the observed responses across the entire data set. SLAs have features called tuning parameters that users can vary to get a better-fitting result. However, the process of finding the best values for tuning parameters is cumbersome, relying on a computationally intensive process called cross-validation where the entire learning process is repeated numerous times. Furthermore, different SLAs can provide somewhat different results on a given data set, and it is unclear in advance which one should be used. Work to be done The proposed research will generate ways to simplify the process of tuning SLAs. We will also provide new ways to combine SLAs into one ensemble predictor that makes use of the different strengths of each individual SLA. To do this, we will develop a new method for mathematically deriving an information criterion (IC) on each SLA. ICs measure the fit of a statistical model to a data set, balancing between making the loss smaller and making a model too complex. Because SLAs are not based on statistical models, we will mathematically approximate the SLA (or features of the SLA) with a statistical model, from which the IC will be developed. The model complexity component is difficult to estimate exactly, but our group has had success doing this on related problems, resulting in new statistical analysis methods with better properties than existing ones. There are hundreds of different SLAs that could be targets for this work. We will perform preliminary tests of many of these candidates to select the ones that have the best combinations of prediction quality and structurally amenable features upon which ICs can be created. These ICs can then be computed on different versions of a single SLA or on multiple SLAs to help select the best-fitting ones. The ICs can also be for model averaging, where different SLA predictions are averaged into a single prediction using weighting determined by their ICs. Outcomes and Benefits The results of this research will be new statistical methods that lead to faster and better prediction algorithms. These algorithms will be developed into software that is freely accessible to millions of users nationwide and worldwide. Users who need fast, accurate answers to important questionsfor example, forecasting consumer trends, comparing potential patient responses to different therapies, and anticipating impacts of public policieswill have better tools for performing these tasks.
背景

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Loughin, Thomas其他文献

Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie
  • DOI:
    10.3852/09-212
  • 发表时间:
    2010-07-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Mandyam, Keerthi;Loughin, Thomas;Jumpponen, Ari
  • 通讯作者:
    Jumpponen, Ari

Loughin, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Loughin, Thomas', 18)}}的其他基金

Semiparametric Statistical (Machine) Learning
半参数统计(机器)学习
  • 批准号:
    RGPIN-2018-04868
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric Statistical (Machine) Learning
半参数统计(机器)学习
  • 批准号:
    RGPIN-2018-04868
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric Statistical (Machine) Learning
半参数统计(机器)学习
  • 批准号:
    RGPIN-2018-04868
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric Statistical (Machine) Learning
半参数统计(机器)学习
  • 批准号:
    RGPIN-2018-04868
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Heteroscedastic trees, ensembles, and other joint models for means and variances
均值和方差的异方差树、集成和其他联合模型
  • 批准号:
    342205-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Heteroscedastic trees, ensembles, and other joint models for means and variances
均值和方差的异方差树、集成和其他联合模型
  • 批准号:
    342205-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Heteroscedastic trees, ensembles, and other joint models for means and variances
均值和方差的异方差树、集成和其他联合模型
  • 批准号:
    342205-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Heteroscedastic trees, ensembles, and other joint models for means and variances
均值和方差的异方差树、集成和其他联合模型
  • 批准号:
    342205-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Identifying dispersion effects in unreplicated multilevel factorial experiments
识别未重复的多级因子实验中的色散效应
  • 批准号:
    342205-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Identifying dispersion effects in unreplicated multilevel factorial experiments
识别未重复的多级因子实验中的色散效应
  • 批准号:
    342205-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
  • 批准号:
    2244160
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
  • 批准号:
    495410
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886365
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886852
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
  • 批准号:
    10714930
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
A Novel Approach to Semi-Supervised Statistical Machine Learning
半监督统计机器学习的新方法
  • 批准号:
    DP230101671
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Projects
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886723
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886777
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了