Local positivity and Diophantine applications

局部积极性和丢番图应用

基本信息

  • 批准号:
    RGPIN-2018-05193
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Algebraic geometry is a rich branch of mathematics which unifies algebra, topology, number theory, and differential geometry. It allows one to reformulate questions which seem to be about algebra or numbers into geometrical questions about shape, or vice versa. Its origins lie in the realization that finding solutions to algebraic equations or understanding the properties of their solutions is intimately tied to the intrinsic geometric nature of the shapes those equations describe. Diophantine geometry is one of the most far-reaching realizations of this philosophy. In general terms it connects the global behaviour of rational number solutions to a system of polynomial equations with the global behaviour of the curvature on the corresponding shape defined by those equations. Previous research by the applicant has extended classic approximation results on the line to arbitrary projective varieties. One of the new ideas introduced was to consider the local influence of curvature on questions of local approximation by rational points. This proposal aims to combine this insight with new ideas from birational and asymptotic algebraic geometry to establish new results in Diophantine geometry. The proposal also aims to contribute new results to questions surrounding positivity in algebraic geometry. The proposed research will train four undergraduate students, three master's students, three doctoral students, and two postdoctoral fellows.
代数几何是数学的一个丰富的分支,它统一了代数学、拓扑学、数论和微分几何。它允许一个重新制定的问题,似乎是关于代数或数字到几何问题的形状,反之亦然。它的起源在于认识到,寻找代数方程的解或理解其解的性质与这些方程描述的形状的内在几何性质密切相关。 丢番图几何是这一哲学最深远的实现之一。在一般情况下,它连接的整体行为的有理数解决方案的一个系统的多项式方程的整体行为的曲率对相应的形状所定义的这些方程。 申请人先前的研究已经将线上的经典近似结果扩展到任意投影簇。其中一个新的想法介绍是考虑当地的影响曲率问题的当地近似合理的点。这个建议的目的是联合收割机这一见解与新的想法,从双有理和渐近代数几何建立丢番图几何的新成果。 该提案还旨在为代数几何中的积极性问题提供新的结果。 本研究将培养4名本科生、3名硕士生、3名博士生和2名博士后。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roth, Michael其他文献

Variability in the reported management of pulmonary metastases in osteosarcoma.
  • DOI:
    10.1002/cam4.407
  • 发表时间:
    2015-04
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Bhattasali, Onita;Vo, Andrea T.;Roth, Michael;Geller, David;Randall, R. Lor;Gorlick, Richard;Gill, Jonathan
  • 通讯作者:
    Gill, Jonathan
Extracellular matrix composition is modified by β2-agonists through cAMP in COPD
  • DOI:
    10.1016/j.bcp.2014.07.026
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Lambers, Christopher;Qi, Ying;Roth, Michael
  • 通讯作者:
    Roth, Michael
Pediatric Oncologists' Views Toward the Use of Complementary and Alternative Medicine in Children With Cancer
PDGF-BB induces PRMT1 expression through ERK1/2 dependent STAT1 activation and regulates remodeling in primary human lung fibroblasts
  • DOI:
    10.1016/j.cellsig.2016.01.004
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Sun, Qingzhu;Liu, Li;Roth, Michael
  • 通讯作者:
    Roth, Michael
IgE Downregulates PTEN through MicroRNA-21-5p and Stimulates Airway Smooth Muscle Cell Remodeling

Roth, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roth, Michael', 18)}}的其他基金

Local positivity and Diophantine applications
局部积极性和丢番图应用
  • 批准号:
    RGPIN-2018-05193
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Local positivity and Diophantine applications
局部积极性和丢番图应用
  • 批准号:
    RGPIN-2018-05193
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic algebraic geometry and Diophantine applications
渐近代数几何和丢番图应用
  • 批准号:
    261900-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic algebraic geometry and Diophantine applications
渐近代数几何和丢番图应用
  • 批准号:
    261900-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic algebraic geometry and Diophantine applications
渐近代数几何和丢番图应用
  • 批准号:
    261900-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic algebraic geometry and Diophantine applications
渐近代数几何和丢番图应用
  • 批准号:
    261900-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic algebraic geometry and Diophantine applications
渐近代数几何和丢番图应用
  • 批准号:
    261900-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Accumulation of rational points and positivity
理性点和积极性的积累
  • 批准号:
    261900-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Accumulation of rational points and positivity
理性点和积极性的积累
  • 批准号:
    261900-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Accumulation of rational points and positivity
理性点和积极性的积累
  • 批准号:
    261900-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Analytical properties of standard subspaces and reflection positivity in AQFT
AQFT 中标准子空间的分析性质和反射正性
  • 批准号:
    22KF0082
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The Alzheimer's Disease Tau Platform Clinical Trial
阿尔茨海默病 Tau 平台临床试验
  • 批准号:
    10655872
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
Decoding Age Differences in Emotional Well-being and Positivity through Everyday Natural Conversations
通过日常自然对话解读情绪健康和积极性的年龄差异
  • 批准号:
    10667001
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
  • 批准号:
    23KJ0673
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
PET imaging of microtubules in cognitively normal and impaired older adults
认知正常和受损老年人的微管 PET 成像
  • 批准号:
    10915761
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
LEAPS-MPS: Braids and Mapping Class Groups: Investigating Left-orders, Twisting, and Positivity
LEAPS-MPS:辫子和映射类组:研究左序、扭曲和正性
  • 批准号:
    2213451
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Resolutions of positivity in Hopf algebras
Hopf 代数中正性的解析
  • 批准号:
    RGPIN-2020-04230
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Matrix Theory with Applications to Positivity and Discrete Mathematics
矩阵理论及其在正性和离散数学中的应用
  • 批准号:
    RGPIN-2019-03934
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Local positivity and Diophantine applications
局部积极性和丢番图应用
  • 批准号:
    RGPIN-2018-05193
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了