Big Models using Big Data for Simulation-based Design and Operational Optimization
使用大数据进行基于仿真的设计和操作优化的大模型
基本信息
- 批准号:RGPIN-2018-06589
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Simulation-based engineering science is a rapidly growing domain where numerical simulation of complex models are used to make design decisions. However, for the models to represent reality, it is better that they be based on collected data. On the other hand, an emerging area of research activity is the Big Data analytic that uses large volume of data in real-time from a variety of information sources for decision-making. Also, new developments in the modeling field relates to network systems, where a number of sub-models are connected with a given topology. This proposal combines all the above domains, by constructing Big Models from Big Data, which will then be used for simulation-based design and optimal operation.
Big Models are clusters of different types of sub-models, derived from Big Data, to represent a given system. Big Models inherit the four Vs of Big Data. The volume aspect of Big Models corresponds to the number of variables used, the variety aspect to the different types of sub-models that co-exist, the velocity aspect to the dynamic or time-varying nature, and the variability aspect to the model uncertainty. It is noted that the construction of Big Models requires a fractured approach in the beginning, followed by an eventual integration.
The proposal proposes a systematic methodology for the construction of such a network model. It also develops algorithms for regression with Big Data. The proposal continues with the two aspects of Process Systems Engineering, i.e., the design and operation. Design decisions are made either using a sensitivity analysis, a mixed-integer programing along with a heuristic simplification. Safety and flexibility are taken into consideration. Operational decisions are taken based on a combination of numerical optimization and real-time Big Data. For the latter, a multi-unit approach is proposed, where a Big Model runs in parallel to the system and the difference between data simulated by the Big Model and the obtained Big Data is used for adaptation.
The proposed methodology will be applied to two case-studies, (i) the aircraft environmental control and (ii) waste water treatment using microbial fuel cells. Both of them have heterogeneous subsystems, and each of the sub-systems has a completely different modeling methodology. The data are also very varied, from direct to indirect measurements. The design aspect will be tested on the aircraft problem, while operational optimization will be carried out on the waste water treatment case.
基于仿真的工程科学是一个快速发展的领域,其中复杂模型的数值仿真用于做出设计决策。然而,为了使模型能够代表现实,最好是基于收集的数据。另一方面,一个新兴的研究活动领域是大数据分析,它实时使用来自各种信息源的大量数据进行决策。此外,建模领域的新发展涉及网络系统,其中许多子模型与给定拓扑结构连接。该提案结合了上述所有领域,通过从大数据构建大模型,然后将其用于基于仿真的设计和优化操作。
大模型是从大数据中派生的不同类型的子模型的集群,以表示给定的系统。大模型继承了大数据的四个V。大模型的体积方面对应于所使用的变量的数量,多样性方面对应于共存的不同类型的子模型,速度方面对应于动态或时变性质,可变性方面对应于模型的不确定性。值得注意的是,大模型的构建需要在开始时采用断裂的方法,然后进行最终的整合。
该提案提出了一个系统的方法来构建这样一个网络模型。它还开发了大数据回归算法。该建议继续过程系统工程的两个方面,即,设计和操作。设计决策是使用灵敏度分析,混合整数规划沿着与启发式简化。考虑了安全性和灵活性。运营决策基于数值优化和实时大数据的组合。对于后者,提出了一种多单元方法,其中大模型与系统并行运行,并且大模型模拟的数据与获得的大数据之间的差异用于适应。
所提出的方法将应用于两个案例研究,(i)飞机环境控制和(ii)废水处理使用微生物燃料电池。它们都有异构的子系统,并且每个子系统都有完全不同的建模方法。从直接测量到间接测量,数据也非常多样化。设计方面将在飞机问题上进行测试,而操作优化将在废水处理的情况下进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasan, Balasubrahmanyan其他文献
Control of the toycopter using a flat approximation
- DOI:
10.1109/tcst.2007.916333 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:4.8
- 作者:
Mullhaupt, Philippe;Srinivasan, Balasubrahmanyan;Bonvin, Dominique - 通讯作者:
Bonvin, Dominique
Srinivasan, Balasubrahmanyan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasan, Balasubrahmanyan', 18)}}的其他基金
Big Models using Big Data for Simulation-based Design and Operational Optimization
使用大数据进行基于仿真的设计和操作优化的大模型
- 批准号:
RGPIN-2018-06589 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Big Models using Big Data for Simulation-based Design and Operational Optimization
使用大数据进行基于仿真的设计和操作优化的大模型
- 批准号:
RGPIN-2018-06589 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Semi-global multi-unit optimization of batch processes
批处理过程的半全局多单元优化
- 批准号:
312315-2010 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Semi-global multi-unit optimization of batch processes
批处理过程的半全局多单元优化
- 批准号:
312315-2010 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Semi-global multi-unit optimization of batch processes
批处理过程的半全局多单元优化
- 批准号:
312315-2010 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Semi-global multi-unit optimization of batch processes
批处理过程的半全局多单元优化
- 批准号:
312315-2010 - 财政年份:2011
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Semi-global multi-unit optimization of batch processes
批处理过程的半全局多单元优化
- 批准号:
312315-2010 - 财政年份:2010
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Development of an analysis framework for measurement-based dynamic optimization
开发基于测量的动态优化分析框架
- 批准号:
312315-2006 - 财政年份:2009
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Development of an analysis framework for measurement-based dynamic optimization
开发基于测量的动态优化分析框架
- 批准号:
312315-2006 - 财政年份:2008
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Development of an analysis framework for measurement-based dynamic optimization
开发基于测量的动态优化分析框架
- 批准号:
312315-2006 - 财政年份:2007
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
The Development of Mathematical Models using Machine Learning with Educational Big Data for Language Acquisition and Individually Optimized Learning
利用机器学习和教育大数据开发数学模型,用于语言习得和个体优化学习
- 批准号:
23K00651 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Design-Based Optimal Subdata Selection Using Mixture-of-Experts Models to Account for Big Data Heterogeneity
协作研究:基于设计的最佳子数据选择,使用专家混合模型来解释大数据异构性
- 批准号:
2210576 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Statistical inference in the big data era: using hierarchical models to estimate the socio-economic situation of Colombia's armed conflict victims wit
大数据时代的统计推断:利用分层模型估算哥伦比亚武装冲突受害者的社会经济状况
- 批准号:
2750472 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Collaborative Research: Design-Based Optimal Subdata Selection Using Mixture-of-Experts Models to Account for Big Data Heterogeneity
协作研究:基于设计的最佳子数据选择,使用专家混合模型来解释大数据异构性
- 批准号:
2210546 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Collaborative Research: Design-Based Optimal Subdata Selection Using Mixture-of-Experts Models to Account for Big Data Heterogeneity
协作研究:基于设计的最佳子数据选择,使用专家混合模型来解释大数据异构性
- 批准号:
2304767 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Clustering and Classification Using Mixture Models: Towards Big Data
使用混合模型进行聚类和分类:迈向大数据
- 批准号:
RGPIN-2017-05255 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Using big data to develop and validate clinical prediction models for survival outcomes in kidney transplant
使用大数据开发和验证肾移植生存结果的临床预测模型
- 批准号:
2432390 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Clustering and Classification Using Mixture Models: Towards Big Data
使用混合模型进行聚类和分类:迈向大数据
- 批准号:
RGPIN-2017-05255 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Using Multistate Models and Big Data to Understand Emergency Department Flow in Alberta
使用多州模型和大数据了解艾伯塔省急诊室的流程
- 批准号:
554065-2020 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
University Undergraduate Student Research Awards
Clustering and Classification Using Mixture Models: Towards Big Data
使用混合模型进行聚类和分类:迈向大数据
- 批准号:
RGPIN-2017-05255 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual