Developing new algorithms and concepts towards understanding protein folding, misfolding, and aggregation
开发新的算法和概念来理解蛋白质折叠、错误折叠和聚集
基本信息
- 批准号:RGPIN-2019-03958
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proteins are essential in performing tasks that are necessary for life, though their proper function can only be performed when folded into their native state. While the native state is stable under physiological conditions, environmental factors such as pH, salt concentration, or interaction with cell membranes may lead to spatial rearrangement of segments within the protein and its subsequent refolding and aggregation into nonnative and often undesirable structures. Protein folding, misfolding, and aggregation plays a critical role in a wide spectrum of fields and applications: Towards advancing protein engineering (a rising multibillion dollar industry); in diminishing protein aggregation that impacts biopharmaceutical development in every stage and is linked to high costs; and in furthering our understanding of protein misfolding disease that afflict over half a million Canadians.
Our understanding of the fundamental processes that drive protein behavior has evolved significantly over the past 50 years. Nonetheless, surprisingly little advancements have been made in models that can predict the folding (and misfolding) process de novo, from a different initial conformation. State-of-the art models require substantial computational power and are currently limited to short protein chains, and hence cannot capture all the mechanisms involved. The goal of my lab is to develop new conceptual approaches to understand the mechanisms of protein folding, misfolding, and aggregation that will allow in silico studies of large proteins within a reasonable timeframe using a desktop computer. In the longer run, these methods will be used to understand and predict more complex biomolecular phenomena (such as docking, protein-DNA interactions, and interactions with nanoparticles for biosensor applications).
In the proposed program I outline novel approaches for modeling protein behavior using various computational tools and methods. My preliminary work shows that computation time required for protein folding prediction can be significantly reduced if simulated in non-Cartesian coordinates. Combining this work with data mining tools, I recently revealed a relation between helical protein structures and their tendency to form malignant misfolded aggregates. Building on this research, the proposed program will form the basis of 3 PhD theses. The students will be trained in the development of molecular models, data mining, and machine learning in the longer run. Data mining algorithms will be used to recognize patterns within protein databases to reveal sequences that are liable to misfolding and aggregation under environmental stress. Machine learning algorithms will be used to identify reliable folding pathways. This research will advance basic understanding of protein behavior while fostering important computational skills in engineering students.
蛋白质在执行生命所必需的任务时是必不可少的,尽管它们的正常功能只有在折叠成天然状态时才能执行。虽然天然状态在生理条件下是稳定的,但环境因素如pH、盐浓度或与细胞膜的相互作用可能导致蛋白质内片段的空间重排及其随后的重折叠和聚集成非天然的且通常不期望的结构。蛋白质折叠、错误折叠和聚集在广泛的领域和应用中起着关键作用:推进蛋白质工程(一个价值数十亿美元的新兴产业);减少蛋白质聚集,影响生物制药发展的每个阶段,并与高成本有关;以及进一步了解困扰50多万加拿大人的蛋白质错误折叠疾病。
在过去的50年里,我们对驱动蛋白质行为的基本过程的理解发生了重大变化。尽管如此,令人惊讶的是,在可以从不同的初始构象从头预测折叠(和错误折叠)过程的模型中,进展甚微。最先进的模型需要大量的计算能力,目前仅限于短蛋白质链,因此无法捕获所有涉及的机制。我的实验室的目标是开发新的概念方法来理解蛋白质折叠,错误折叠和聚集的机制,这将允许在合理的时间范围内使用台式计算机对大型蛋白质进行计算机研究。从长远来看,这些方法将用于理解和预测更复杂的生物分子现象(如对接,蛋白质-DNA相互作用,以及与生物传感器应用中的纳米颗粒的相互作用)。
在拟议的计划中,我概述了新的方法,利用各种计算工具和方法建模蛋白质的行为。我的初步工作表明,蛋白质折叠预测所需的计算时间可以显着减少,如果在非笛卡尔坐标系中模拟。结合这项工作与数据挖掘工具,我最近揭示了螺旋蛋白质结构和它们形成恶性错误折叠聚集体的倾向之间的关系。在这项研究的基础上,拟议的计划将形成3篇博士论文的基础。从长远来看,学生将接受分子模型,数据挖掘和机器学习的开发培训。数据挖掘算法将用于识别蛋白质数据库中的模式,以揭示在环境压力下易于错误折叠和聚集的序列。机器学习算法将用于识别可靠的折叠途径。这项研究将促进对蛋白质行为的基本理解,同时培养工程专业学生的重要计算技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srebnik, Simcha其他文献
Sequence-dependent association of alginate with sodium and calcium counterions
- DOI:
10.1016/j.carbpol.2016.10.081 - 发表时间:
2017-02-10 - 期刊:
- 影响因子:11.2
- 作者:
Hecht, Hadas;Srebnik, Simcha - 通讯作者:
Srebnik, Simcha
Negative Pressure within a Liquid-Fluid Interface Determines Its Thickness
- DOI:
10.1021/acs.langmuir.0c01193 - 发表时间:
2020-07-14 - 期刊:
- 影响因子:3.9
- 作者:
Srebnik, Simcha;Marmur, Abraham - 通讯作者:
Marmur, Abraham
Simulation of Protein-Imprinted Polymers. 2. Imprinting Efficiency
- DOI:
10.1021/jp108762t - 发表时间:
2010-12-23 - 期刊:
- 影响因子:3.3
- 作者:
Levi, Liora;Srebnik, Simcha - 通讯作者:
Srebnik, Simcha
Structural Characterization of Sodium Alginate and Calcium Alginate
- DOI:
10.1021/acs.biomac.6b00378 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:6.2
- 作者:
Hecht, Hadas;Srebnik, Simcha - 通讯作者:
Srebnik, Simcha
Simulation of Thin Film Membranes Formed by Interfacial Polymerization
- DOI:
10.1021/la9024684 - 发表时间:
2010-01-05 - 期刊:
- 影响因子:3.9
- 作者:
Oizerovich-Honig, Rachel;Raim, Vladimir;Srebnik, Simcha - 通讯作者:
Srebnik, Simcha
Srebnik, Simcha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srebnik, Simcha', 18)}}的其他基金
Developing new algorithms and concepts towards understanding protein folding, misfolding, and aggregation
开发新的算法和概念来理解蛋白质折叠、错误折叠和聚集
- 批准号:
RGPIN-2019-03958 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Developing new algorithms and concepts towards understanding protein folding, misfolding, and aggregation
开发新的算法和概念来理解蛋白质折叠、错误折叠和聚集
- 批准号:
RGPIN-2019-03958 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Developing new algorithms and concepts towards understanding protein folding, misfolding, and aggregation
开发新的算法和概念来理解蛋白质折叠、错误折叠和聚集
- 批准号:
RGPIN-2019-03958 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
脊髓新鉴定SNAPR神经元相关环路介导SCS电刺激抑制恶性瘙痒
- 批准号:82371478
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
tau轻子衰变与新物理模型唯象研究
- 批准号:11005033
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
HIV gp41的NHR区新靶点的确证及高效干预
- 批准号:81072676
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
强子对撞机上新物理信号的多轻子末态研究
- 批准号:10675110
- 批准年份:2006
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Reflectance confocal microscopy-optical coherence tomography (RCM-OCT) imaging of oral lesions: Toward an affordable device and approach for developing countries
口腔病变的反射共焦显微镜-光学相干断层扫描 (RCM-OCT) 成像:为发展中国家提供负担得起的设备和方法
- 批准号:
10735695 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Developing a Precision Medicine Approach to Pediatric Sepsis-Associated Acute Kidney Injury: Identification of Unique Subphenotypes and Strategies for Bedside Implementation
开发针对小儿脓毒症相关急性肾损伤的精准医学方法:识别独特的亚表型和临床实施策略
- 批准号:
10721391 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Developing new algorithms and concepts towards understanding protein folding, misfolding, and aggregation
开发新的算法和概念来理解蛋白质折叠、错误折叠和聚集
- 批准号:
RGPIN-2019-03958 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Developing new algorithms and concepts towards understanding protein folding, misfolding, and aggregation
开发新的算法和概念来理解蛋白质折叠、错误折叠和聚集
- 批准号:
RGPIN-2019-03958 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Developing Machine Learning Models for the Analysis of Splicing Data in Large Heterogeneous Cohorts
开发机器学习模型来分析大型异构队列中的拼接数据
- 批准号:
10506326 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Developing Machine Learning Models for the Analysis of Splicing Data in Large Heterogeneous Cohorts
开发机器学习模型来分析大型异构队列中的拼接数据
- 批准号:
10672974 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Developing Machine Learning Models for the Analysis of Splicing Data in Large Heterogeneous Cohorts
开发机器学习模型来分析大型异构队列中的拼接数据
- 批准号:
10315802 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Developing high-throughput genetic perturbation strategies for single cells in cancer organoids
开发癌症类器官中单细胞的高通量遗传扰动策略
- 批准号:
10004966 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Virtual Fittings- developing a new software using data algorithms and scanning technology to offer an accurate remote breast form fitting service to women in isolation following breast cancer treatment.
虚拟试衣——使用数据算法和扫描技术开发一种新软件,为乳腺癌治疗后隔离的女性提供准确的远程乳房试衣服务。
- 批准号:
70628 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Feasibility Studies
Developing novel technologies to monitor nociception and opioid administration during surgery and general anesthesia in order to minimize post-operative opioid requirements
开发新技术来监测手术和全身麻醉期间的伤害感受和阿片类药物的给药,以尽量减少术后阿片类药物的需求
- 批准号:
10595838 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别: