The exponential map for flows and its application in geometric control theory

流动指数图及其在几何控制理论中的应用

基本信息

  • 批准号:
    RGPIN-2019-04554
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

This research is connected with the area of control theory, a field with many areas of application, ranging from robotics, to chemical processes, to scheduling of medical treatments. The primary focus of the work is on a sub-discipline of control theory known as geometric control theory. The tools of geometric control theory are most useful for studying control systems described by ordinary differential equation models that are not linear. For nonlinear ordinary differential equation models, many of the basic problems of control theory remain unanswered. Three such important basic problems are (1) controllability, (2) stabilisability, and (3) optimality. The problem of controllability is, in rough terms, that of using control to steer a system from a given initial state to a desired final state. A simple example is the steering of a mobile robot from one configuration to another. The problem of stabilisability is to use control to render a (possibly unstable) behaviour stable. A simple example is the balancing of a pendulum in its upright configuration. The problem of optimality is that of determining whether a given behaviour minimises a prescribed cost. A simple example is the mobile robot steering problem mentioned above, but now requiring that the reconfiguration be done while using the least possible energy. All three of these problems have a component of their resolution that relies on a detailed understanding of the local structure of a system. It is the aim of this work to understand this local structure with the objective of coming to a more complete understanding of the basic problems described above. While existing work has contributed greatly to our understanding of this structure, it is fair to say that a comprehensive understanding remains elusive. To make advances on this understanding, the proposed research uses a new modelling framework for geometric control systems, one founded in the mathematics of advanced functional analysis, sheaf theory, and pseudogroups. Functional analysis is used to topologise spaces of vector fields, and recent work by the proposer's group has made significant advances by understanding this topology for real analytic vector fields, an especially important case for geometric control theory. With these functional analysis tools, it becomes possible to employ methods of sheaf theory (for spaces of vector fields) and the theory of pseudogroups (for spaces of flows) to express the subtle behaviour exhibited by control systems. These tools have hitherto not been widely used in control theory, and so provide unexplored avenues for fruitful future work. The proposal is concerned with a long-term program of basic research. The intention of the work, however, is to shed light on applied problems, and eventually produce methodologies based on the deep understanding revealed by new results and techniques. An important facet of the proposal is to utilise and train highly qualified personnel.
这项研究与控制理论领域有关,该领域有许多应用领域,从机器人到化学过程,再到医疗计划。这项工作的主要重点是控制理论的一个分支学科,即几何控制理论。几何控制理论的工具对于研究由非线性常微分方程模型描述的控制系统是最有用的。对于非线性常微分方程模型,控制理论的许多基本问题仍未得到解答。三个这样重要的基本问题是(1)可控性,(2)稳定性和(3)最优性。可控性的问题,粗略地说,就是使用控制来引导系统从给定的初始状态到期望的最终状态。一个简单的例子是移动机器人从一种配置转向另一种配置。稳定性的问题是使用控制使(可能不稳定的)行为稳定。一个简单的例子是使摆摆保持直立状态的平衡。最优性问题是确定给定行为是否使规定成本最小化的问题。一个简单的例子是上面提到的移动机器人转向问题,但现在要求在使用尽可能少的能量的情况下完成重新配置。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lewis, Andrew其他文献

Deepfake detection with and without content warnings.
  • DOI:
    10.1098/rsos.231214
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Lewis, Andrew;Vu, Patrick;Duch, Raymond M.;Chowdhury, Areeq
  • 通讯作者:
    Chowdhury, Areeq
Biogeography-based optimisation with chaos
  • DOI:
    10.1007/s00521-014-1597-x
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Saremi, Shahrzad;Mirjalili, Seyedali;Lewis, Andrew
  • 通讯作者:
    Lewis, Andrew
The trajectory of maternal perinatal depressive symptoms predicts executive function in early childhood.
  • DOI:
    10.1017/s0033291723002118
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Power, Josephine;Watson, Stuart;Chen, Wai;Lewis, Andrew;van IJzendoorn, Marinus;Galbally, Megan
  • 通讯作者:
    Galbally, Megan
Gender differences in perceived risk of COVID-19
  • DOI:
    10.1111/ssqu.13079
  • 发表时间:
    2021-10-29
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Lewis, Andrew;Duch, Raymond
  • 通讯作者:
    Duch, Raymond
Real-Time Camera Localization during Robot-Assisted Telecystoscopy for Bladder Cancer Surveillance
用于膀胱癌监测的机器人辅助膀胱镜检查期间的实时摄像头定位
  • DOI:
    10.1142/s2424905x22410021
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gong, Chen;Zhou, Yaxuan;Lewis, Andrew;Chen, Pengcheng;Speich, Jason R.;Porter, Michael P.;Hannaford, Blake;Seibel, Eric J.
  • 通讯作者:
    Seibel, Eric J.

Lewis, Andrew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lewis, Andrew', 18)}}的其他基金

The exponential map for flows and its application in geometric control theory
流动指数图及其在几何控制理论中的应用
  • 批准号:
    RGPIN-2019-04554
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
The exponential map for flows and its application in geometric control theory
流动指数图及其在几何控制理论中的应用
  • 批准号:
    RGPIN-2019-04554
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
The exponential map for flows and its application in geometric control theory
流动指数图及其在几何控制理论中的应用
  • 批准号:
    RGPIN-2019-04554
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
On the interplay of controllability and stabilisation
关于可控性和稳定性的相互作用
  • 批准号:
    217005-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
On the interplay of controllability and stabilisation
关于可控性和稳定性的相互作用
  • 批准号:
    217005-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
On the interplay of controllability and stabilisation
关于可控性和稳定性的相互作用
  • 批准号:
    217005-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
On the interplay of controllability and stabilisation
关于可控性和稳定性的相互作用
  • 批准号:
    217005-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
The local structure of affine systems
仿射系统的局部结构
  • 批准号:
    217005-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
The local structure of affine systems
仿射系统的局部结构
  • 批准号:
    217005-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
The local structure of affine systems
仿射系统的局部结构
  • 批准号:
    217005-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

HABP4通过FMRP/MAP1B通路调控肠神经系统发育的作用及机制研究
  • 批准号:
    JCZRYB202500700
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
MAP2K3参与三叉神经痛的机制及其在射频镇痛中的作用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Pgp3通过MAP4K4/LFA-1轴调控CD8+T细胞耗竭介导沙眼衣原体持续性感染机制研究
  • 批准号:
    2025JJ60614
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内质网应激调控MAP3K5/FOXO/HMOX1信号通路致糖尿病室性心律失常的作用及其机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
雷公藤外泌体通过传递雷公藤红素靶向MAP2K1调控VEGF、NF-κB及HO-1促进糖尿病伤口愈合的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
MAP4维持线粒体自噬和凋亡平衡在低氧微环境促进创面再上皮化中 的作用机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
MLK蛋白激酶与转录因子MAP调控植物免疫反应的机制研究
  • 批准号:
    32300260
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MAP4K4通过激活KLF4转录促进卵巢癌细胞干性诱导耐药持留状态的机制研究
  • 批准号:
    82303377
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The exponential map for flows and its application in geometric control theory
流动指数图及其在几何控制理论中的应用
  • 批准号:
    RGPIN-2019-04554
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
The exponential map for flows and its application in geometric control theory
流动指数图及其在几何控制理论中的应用
  • 批准号:
    RGPIN-2019-04554
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
The exponential map for flows and its application in geometric control theory
流动指数图及其在几何控制理论中的应用
  • 批准号:
    RGPIN-2019-04554
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Creation of disaster risk map considering occurrence frequency and impact of debris flows from the viewpoint of time-related disaster prevention studies
从时间相关防灾研究的角度,考虑泥石流的发生频率和影响,创建灾害风险图
  • 批准号:
    15H04038
  • 财政年份:
    2015
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Regularity for the evolutionary p-Laplace operator and global existence of the p-harmonic map flows
演化 p-拉普拉斯算子的正则性和 p 调和映射流的全局存在性
  • 批准号:
    24540215
  • 财政年份:
    2012
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A regularity criterion for the harmonic map flows and asymptotic analysis for singularity
调和映射流的正则判据和奇点的渐近分析
  • 批准号:
    21540222
  • 财政年份:
    2009
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical research on regularity and singularity for the m-harmonic map flows and energy quantization phenomenon
调和图流规律性与奇异性及能量量子化现象的数学研究
  • 批准号:
    19540221
  • 财政年份:
    2007
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
REGULARITY ANALYSIS OF DISCRETE MORSE FLOWS FOR ANARISYS OF GENERAL CRITICAL POINTS
离散莫尔斯流正则分析一般临界点分析
  • 批准号:
    18540192
  • 财政年份:
    2006
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
  • 批准号:
    0096062
  • 财政年份:
    1999
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Numerical simulation of the Debris Flow Occurred at Izumi City on July 10, 1997.
1997年7月10日和泉市泥石流的数值模拟。
  • 批准号:
    10680447
  • 财政年份:
    1998
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了