Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
基本信息
- 批准号:RGPIN-2019-04040
- 负责人:
- 金额:$ 5.39万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the advances in social, mobile and cloud computing, crowdsourcing has become the norm in today's digital media production and sharing, which utilizes the collective effort of users in the online community. With no doubt, networked services in the future will focus on the user experience and participation with rich media from the crowd. The boundless coverage of socialized media sharing however presents unprecedented scale challenges. Highly diversified content types, origins, and distribution channels further impose complex interactions among the individual participants, particularly for advanced immersive applications such as interactive livecast/gamecast, multi-party media production, online gaming and augmented reality (AR). Their demands on quality and responsiveness are much higher (e.g., latency in the order of 100 ms, or even 10 ms for AR) than conventional IPTV or VoIP.
These rich interactions, on the other hand, provide rich and low cost data that were previously unavailable. Leveraging advanced data analytics and learning tools, the hidden intelligence from the crowd can be unveiled toward better system design. For instance, inferring game progress from live chat messages and tracking viewport through gaze patterns for resource reservation and display optimization. Yet uncalibrated data in the wild can be highly noisy, not to mention the intrinsic heterogeneity and dynamics of the Internet.
Our research is guided by the following critical question: How can massive digital media content be effectively generated and delivered among the crowd with intensive online interactions and with the intelligence therein? Our long-term objective is to systematically examine the challenges in advanced interactive and crowdsourced multimedia services and to develop integrated solutions that will accommodate and utilize the interactions. A series of issues are to be addressed within the solution framework: (1) Online analysis of crowdsourced interaction data; (2) Advanced computing and communication architecture, in particular, cloud-edge collaboration for delay-sensitive applications; (3) Ultra-low-latency and -energy data transport. Beyond simply putting the individual results together, the design of individual modules will be revisited during system integration. This iterative process will eventually lead to an optimized coherent design, making the future multimedia services agile, efficient, and intelligent, and, in the long run, benefiting emerging applications without human-in-the-loop, such as assisted/autonomous driving.
My team's broad expertise with state-of-the-art computing and communication systems has prepared us for exploring these new research frontiers. We will train highly qualified personnel and will nurture extensive collaboration with academic researchers worldwide, as well as with local and international industrial partners to pursue technology transfers, so as to raise Canada's global profile in this priority area.
随着社交、移动和云计算的进步,众包已经成为当今数字媒体生产和共享的常态,它利用在线社区用户的集体努力。毫无疑问,未来的网络化服务将专注于用户体验和人群中的富媒体参与。然而,社会化媒体分享的无限覆盖面带来了前所未有的规模挑战。高度多样化的内容类型、来源和分发渠道进一步推动了单个参与者之间的复杂交互,特别是对于交互式直播/游戏广播、多方媒体制作、在线游戏和增强现实(AR)等高级沉浸式应用。与传统的IPTV或VoIP相比,它们对质量和响应性的要求要高得多(例如,延迟在100ms左右,甚至AR为10ms)。
另一方面,这些丰富的交互提供了以前无法获得的丰富且低成本的数据。利用先进的数据分析和学习工具,隐藏在人群中的情报可以被揭示出来,从而实现更好的系统设计。例如,从实时聊天消息推断游戏进度,并通过凝视模式跟踪视区,以进行资源预留和显示优化。然而,未经校准的野外数据可能会非常嘈杂,更不用说互联网的内在异质性和动态化了。
我们的研究以以下关键问题为指导:如何通过密集的在线互动和其中的智能在人群中有效地生成和交付海量数字媒体内容?我们的长期目标是系统地研究先进的互动和众包多媒体服务的挑战,并开发适应和利用这些互动的综合解决方案。该解决方案框架将解决一系列问题:(1)众包互动数据的在线分析;(2)先进的计算和通信架构,特别是针对延迟敏感型应用的云边缘协作;(3)超低延迟和高能量数据传输。除了简单地将各个结果放在一起之外,在系统集成期间还将重新考虑各个模块的设计。这种迭代过程最终将导致优化的连贯设计,使未来的多媒体服务灵活、高效和智能,从长远来看,有利于没有人在回路中的新兴应用,如辅助/自动驾驶。
我的团队在最先进的计算和通信系统方面的广泛专业知识为我们探索这些新的研究前沿做好了准备。我们将培养高素质的人才,并将与世界各地的学术研究人员以及与当地和国际工业合作伙伴开展广泛的合作,以寻求技术转让,以提高加拿大在这一优先领域的全球形象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liu, Jiangchuan其他文献
Propagation-based social-aware multimedia content distribution
基于传播的社交感知多媒体内容分发
- DOI:
10.1145/2523001.2523005 - 发表时间:
2013-10 - 期刊:
- 影响因子:0
- 作者:
Wang, Zhi;Zhu, Wenwu;Chen, Xiangwen;Sun, Lifeng;Liu, Jiangchuan;Chen, Minghua;Cui, Peng;Yang, Shiqiang - 通讯作者:
Yang, Shiqiang
Fast and Accurate Detection of Unknown Tags for RFID Systems - Hash Collisions are Desirable
快速准确地检测 RFID 系统的未知标签 - 哈希冲突是可取的
- DOI:
10.1109/tnet.2019.2957239 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:3.7
- 作者:
Liu, Xiulong;Chen, Sheng;Liu, Jiangchuan - 通讯作者:
Liu, Jiangchuan
WHEN RFID MEETS DEEP LEARNING: EXPLORING COGNITIVE INTELLIGENCE FOR ACTIVITY IDENTIFICATION
- DOI:
10.1109/mwc.2019.1800405 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:12.9
- 作者:
Fan, Xiaoyi;Wang, Fangxin;Liu, Jiangchuan - 通讯作者:
Liu, Jiangchuan
RoArray: Towards More Robust Indoor Localization Using Sparse Recovery with Commodity WiFi
- DOI:
10.1109/tmc.2018.2860018 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:7.9
- 作者:
Gong, Wei;Liu, Jiangchuan - 通讯作者:
Liu, Jiangchuan
Lightweight Imitation Learning for Real-Time Cooperative Service Migration
- DOI:
10.1109/tmc.2023.3239845 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:7.9
- 作者:
Ning, Zhaolong;Chen, Handi;Liu, Jiangchuan - 通讯作者:
Liu, Jiangchuan
Liu, Jiangchuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liu, Jiangchuan', 18)}}的其他基金
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
- 批准号:
RGPIN-2019-04040 - 财政年份:2022
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
- 批准号:
RGPIN-2019-04040 - 财政年份:2021
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Understand the challenges and potentials of serverless computing for realtime networked multimedia
了解实时网络多媒体的无服务器计算的挑战和潜力
- 批准号:
543280-2019 - 财政年份:2019
- 资助金额:
$ 5.39万 - 项目类别:
Engage Grants Program
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
- 批准号:
RGPIN-2019-04040 - 财政年份:2019
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Scalable and Energy-Efficient Multimedia Content Sharing over New Generation Computing and Communication Platforms
通过新一代计算和通信平台实现可扩展且节能的多媒体内容共享
- 批准号:
RGPIN-2014-04765 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Scalable and Energy-Efficient Multimedia Content Sharing over New Generation Computing and Communication Platforms
通过新一代计算和通信平台实现可扩展且节能的多媒体内容共享
- 批准号:
RGPIN-2014-04765 - 财政年份:2017
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Collaborative edge and cloud learning: Potentials and solutions
协作边缘和云学习:潜力和解决方案
- 批准号:
522129-2017 - 财政年份:2017
- 资助金额:
$ 5.39万 - 项目类别:
Engage Grants Program
Scalable and Energy-Efficient Multimedia Content Sharing over New Generation Computing and Communication Platforms
通过新一代计算和通信平台实现可扩展且节能的多媒体内容共享
- 批准号:
RGPIN-2014-04765 - 财政年份:2016
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Deployment of networking and cloud architectures for intelligent camera network
智能摄像机网络的网络和云架构部署
- 批准号:
507132-2016 - 财政年份:2016
- 资助金额:
$ 5.39万 - 项目类别:
Engage Grants Program
Nomination for NSERC Steacie Memorial Fellowship
NSERC Steacie 纪念奖学金提名
- 批准号:
468747-2015 - 财政年份:2016
- 资助金额:
$ 5.39万 - 项目类别:
EWR Steacie Fellowships - Salary
相似海外基金
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
- 批准号:
RGPIN-2019-04040 - 财政年份:2022
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Highly Interactive Visual Analytics
高度互动的视觉分析
- 批准号:
RGPIN-2016-05739 - 财政年份:2021
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
- 批准号:
RGPIN-2019-04040 - 财政年份:2021
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Healthinote: a highly visual and interactive health platform
Healthinote:高度可视化和互动的健康平台
- 批准号:
830159 - 财政年份:2020
- 资助金额:
$ 5.39万 - 项目类别:
Innovation Loans
Highly Interactive Visual Analytics
高度互动的视觉分析
- 批准号:
RGPIN-2016-05739 - 财政年份:2020
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Highly Interactive Visual Analytics
高度互动的视觉分析
- 批准号:
RGPIN-2016-05739 - 财政年份:2019
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Towards Highly Interactive Networked Multimedia Services with Crowd Intelligence
通过群体智能实现高度交互的网络多媒体服务
- 批准号:
RGPIN-2019-04040 - 财政年份:2019
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Highly Interactive Visual Analytics
高度互动的视觉分析
- 批准号:
RGPIN-2016-05739 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
MRI: Development of Enodia: A Highly Reconfigurable, HPC-Backed Instrument Enabling Multifaceted Interactive Visualization
MRI:Enodia 的开发:一种高度可重构、HPC 支持的仪器,可实现多方面的交互式可视化
- 批准号:
1828611 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
Standard Grant
The development of a dynamic analytics software platform, which explains the key core dependencies of the vast multifaceted metrology problems within volume manufacturing through a highly visual interactive interface
动态分析软件平台的开发,通过高度可视化的交互界面解释了批量制造中大量多方面计量问题的关键核心依赖关系
- 批准号:
104049 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
Collaborative R&D














{{item.name}}会员




