Automatic Deep Neural Network Design by a Novel Stochastic Search Process

通过新颖的随机搜索过程进行自动深度神经网络设计

基本信息

  • 批准号:
    RGPIN-2020-04469
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The promising advances made in machine learning and especially deep learning have led to better modeling accuracy for different applications such as image classification, object detection, speech recognition, and even medical applications. However, the design cycle of these models still rely on manual, time-consuming, and very complex process, which requires high-level expertise. Consequently, the design and development of specialized and efficient neural network models using such time-consuming manual processes are very difficult slowing down their adoption in many real-world applications. Such shortcoming becomes even more critical especially when it is necessary to take into account the inherent limitations in the computational power and the memory of the available hardware. Neural architecture search (NAS) methods offer a solution to address these challenges. NAS designs the underlying graph structure of models automatically by heuristically searching the solution space to find the most optimal structure. Despite their promising potentials, NAS approaches are still in their infancy, computationally complex and limited to specific applications. The proposed research program aims to mitigate these challenges. The following objectives will be investigated: i) Investigate stochastic branch prediction strategies to reduce the dimensionality of the search space architecture and accordingly the computational complexity. ii) Characterize the complex information inside the computational graph of a deep learning model based on the new stochastic process. iii) Incorporate hardware characteristics in the design process and develop a novel approach to generate hardware-specific optimized computational graphs for the deep learning models. vi) Design and develop more adaptive machine learning systems via the novel method which take environmental properties into account. The results of the proposed research program will increase the applicability of deep neural networks in different industries such as autonomous driving, consumer electronics and healthcare. Due to its automatic nature, the proposed approach offers dramatically reduced design cycles, which facilitates developing applications based on this technology with much less level of end-user expertise. This new approach will also boost the adoption of deep learning models in different industries in Canada as a pioneer country in the field of AI. The knowledge and technologies developed in the proposed research program will be transferred through active collaborations with industrial partners such as Microsoft, Intel and DarwinAI. This ensures the efficient development and deployment of deep neural networks for real-world Machine Learning applications. HQP trained in this program will become experts in the field of artificial intelligence and machine learning, putting them in a strong position for AI leadership roles in industry as well as in academia, where there is currently a shortage of experts.
机器学习特别是深度学习的发展带来了更高的建模精度,适用于不同的应用,如图像分类、目标检测、语音识别,甚至医疗应用。然而,这些模型的设计周期仍然依赖于人工、耗时且非常复杂的过程,这需要高水平的专业知识。 因此,使用这种耗时的手动过程设计和开发专门而高效的神经网络模型非常困难,从而减缓了它们在许多现实世界应用中的采用。这种缺点变得更加严重,特别是当必须考虑到可用硬件的计算能力和存储器的固有限制时。 神经结构搜索(NAS)方法为解决这些挑战提供了一种解决方案。NAS通过启发式搜索解空间来自动设计模型的底层图结构,以找到最优结构。尽管NAS方法前景看好,但它们仍处于起步阶段,计算复杂,仅限于特定的应用。 拟议的研究计划旨在缓解这些挑战。将调查以下目标: I)研究随机分支预测策略,以降低搜索空间结构的维度,从而降低计算复杂度。 Ii)基于新的随机过程刻画深度学习模型计算图中的复杂信息。 Iii)将硬件特性融入到设计过程中,并开发了一种新的方法来为深度学习模型生成特定于硬件的优化计算图。 Vi)通过考虑环境特性的新方法设计和开发更具适应性的机器学习系统。 拟议的研究计划的结果将增加深度神经网络在自动驾驶、消费电子和医疗保健等不同行业的适用性。由于其自动化的性质,建议的方法提供了显著缩短的设计周期,从而促进了基于该技术的应用程序的开发,而最终用户的专业知识水平要低得多。这一新方法还将推动加拿大作为人工智能领域的先驱国家在不同行业采用深度学习模式。在拟议的研究计划中开发的知识和技术将通过与微软、英特尔和DarwinAI等行业合作伙伴的积极合作来转移。这确保了针对真实世界的机器学习应用的深度神经网络的高效开发和部署。 在该项目中培训的HQP将成为人工智能和机器学习领域的专家,使他们在目前专家短缺的行业和学术界处于人工智能领导角色的有利地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shafiee, MohammadJavad其他文献

Shafiee, MohammadJavad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shafiee, MohammadJavad', 18)}}的其他基金

Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    RGPIN-2020-04469
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    RGPIN-2020-04469
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    DGECR-2020-00426
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
  • 批准号:
    12271434
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
  • 批准号:
    2020A151501709
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
面向Deep Web的数据整合关键技术研究
  • 批准号:
    61872168
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于语义计算的海量Deep Web知识探索机制研究
  • 批准号:
    61272411
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
  • 批准号:
    61100167
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向Deep Web的大规模知识库自动构建方法研究
  • 批准号:
    61170020
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Deep Web敏感聚合信息保护方法研究
  • 批准号:
    61003054
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于逻辑强化学习的Deep Web模式匹配研究
  • 批准号:
    61070122
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    RGPIN-2020-04469
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Establishing a method for Automatic identification of Cervical Cancer Cells by a Deep Neural Network
建立深度神经网络自动识别宫颈癌细胞的方法
  • 批准号:
    21K21320
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    RGPIN-2020-04469
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic segmentation of breast lesions in US images using reduced-complexity deep neural networks
使用降低复杂度的深度神经网络自动分割超声图像中的乳腺病变
  • 批准号:
    550149-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    University Undergraduate Student Research Awards
Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    DGECR-2020-00426
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
An Efficient Approach to Automatic Model Discovery for Designing Deep Neural Networks
设计深度神经网络的自动模型发现的有效方法
  • 批准号:
    518781-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
An Efficient Approach to Automatic Model Discovery for Designing Deep Neural Networks
设计深度神经网络的自动模型发现的有效方法
  • 批准号:
    518781-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Automatic Financial News Summary Using GPU based Deep Neural Networks
使用基于 GPU 的深度神经网络自动财经新闻摘要
  • 批准号:
    19F19800
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Automatic crack detection from pavements using deep neural networks with small data set
使用小数据集的深度神经网络自动检测路面裂缝
  • 批准号:
    18K04302
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Efficient Approach to Automatic Model Discovery for Designing Deep Neural Networks
设计深度神经网络的自动模型发现的有效方法
  • 批准号:
    518781-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了