Modelling and Feature Selection with Applications to Big Data Problems

建模和特征选择及其在大数据问题中的应用

基本信息

  • 批准号:
    RGPIN-2019-05963
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Objectives of proposed research are to continue (1) to develop techniques for system modelling and feature selection, creating methods of extracting useful information applicable to both short noisy experimental records and big data problems, and (2) to apply such methods to important problems in physical and industrial systems. Proposed research will devise methods to detect key features/entities and identify causal relationships by applying Fast Orthogonal Search (FOS) and Modified FOS (MFOS) algorithms. In networks of interacting agents, FOS and MFOS will reverse engineer which key network entities control activities of the others. FOS and MFOS select one specific entity at a time and identify which others are interacting agents. The approach will include machine learning, deep learning, pattern recognition, and classification to determine both the most influential entities and cause-and-effect relationships. The approach will integrate FOS and MFOS into Deep Learning strategies and fuzzy interface systems. One unique aspect of the proposed methodology is deducing interactions of inhibition and activation between entities despite high encryption levels. FOS detects key words in encrypted messages, achieving highest accuracy of any method tested [McGaughey et al, A Systematic Approach of Feature Selection for Encrypted Network Traffic Classification, 2018 Annual IEEE SysCon]. Hence refinement to enable high-speed detection of encrypted words will be part of proposed methodology. Other real--world problems include understanding cardiac arrhythmia. Key to FOS, MFOS and parallel cascade identification (PCI) is ability to search very large candidate sets to rapidly find the best terms to predict the value of some output variable. In a network of suspected terrorists we can identify which entities (individuals or cells) best predict the time activities of other entities (e.g., use of communication devices, internet time, etc). If each time function assigned to a group member is the time that person is using a communication device, then candidate terms to predict one person's time function may involve not only the other group members' time functions but also cross--products thereof. This way other people's activities become apparent without ever demonstrating overt interaction. The proposed approach is unique in its ability to identify even the least obvious candidates those entities never having apparent communication with others but yet best predicting the network activity of other entities. FOS and PCI have been used to successfully reverse engineer gene regulatory networks [Zhen Wang, MSc thesis, School of Computing, Queen's University, October 2010]. However, FOS, MFOS, and PCI have not been applied to detect and disrupt terrorist network activity. We will employ FOS and MFOS in parallel implementation which has proven to be up to 10 times faster than the Fast Fourier Transform, the gold standard in inline coherence imaging in physics.
拟议研究的目标是继续

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Korenberg, Michael其他文献

Integration of GNSS Precise Point Positioning and Reduced Inertial Sensor System for Lane-Level Car Navigation
Online Motion Mode Recognition for Portable Navigation Using Low-Cost Sensors
Low-Cost Real-Time PPP/INS Integration for Automated Land Vehicles
  • DOI:
    10.3390/s19224896
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Elsheikh, Mohamed;Abdelfatah, Walid;Korenberg, Michael
  • 通讯作者:
    Korenberg, Michael

Korenberg, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Korenberg, Michael', 18)}}的其他基金

Modelling and Feature Selection with Applications to Big Data Problems
建模和特征选择及其在大数据问题中的应用
  • 批准号:
    RGPIN-2019-05963
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling and Feature Selection with Applications to Big Data Problems
建模和特征选择及其在大数据问题中的应用
  • 批准号:
    RGPIN-2019-05963
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling and Feature Selection with Applications to Big Data Problems
建模和特征选择及其在大数据问题中的应用
  • 批准号:
    RGPIN-2019-05963
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Nonlinear Systems Identification for Modelling and Analysis of Biological, Physical, and Industrial Processes"
“生物、物理和工业过程建模和分析的非线性系统识别”
  • 批准号:
    5985-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Nonlinear Systems Identification for Modelling and Analysis of Biological, Physical, and Industrial Processes"
“生物、物理和工业过程建模和分析的非线性系统识别”
  • 批准号:
    5985-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Nonlinear Systems Identification for Modelling and Analysis of Biological, Physical, and Industrial Processes"
“生物、物理和工业过程建模和分析的非线性系统识别”
  • 批准号:
    5985-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Nonlinear Systems Identification for Modelling and Analysis of Biological, Physical, and Industrial Processes"
“生物、物理和工业过程建模和分析的非线性系统识别”
  • 批准号:
    5985-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Nonlinear Systems Identification for Modelling and Analysis of Biological, Physical, and Industrial Processes"
“生物、物理和工业过程建模和分析的非线性系统识别”
  • 批准号:
    5985-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear systems identification for modelling and analysis of biological, physical, and industrial processes
用于生物、物理和工业过程建模和分析的非线性系统识别
  • 批准号:
    5985-2005
  • 财政年份:
    2010
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear systems identification for modelling and analysis of biological, physical, and industrial processes
用于生物、物理和工业过程建模和分析的非线性系统识别
  • 批准号:
    5985-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Knockoff Feature Selection Techniques for Robust Inference in Supervised and Unsupervised Learning
监督和无监督学习中鲁棒推理的仿冒特征选择技术
  • 批准号:
    2310955
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Feature selection in several challenging directions
几个具有挑战性的方向的特征选择
  • 批准号:
    2310668
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Modelling and Feature Selection with Applications to Big Data Problems
建模和特征选择及其在大数据问题中的应用
  • 批准号:
    RGPIN-2019-05963
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
III: Small: Deep Interactive Reinforcement Learning for Self-optimizing Feature Selection
III:小:用于自优化特征选择的深度交互式强化学习
  • 批准号:
    2152030
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Matrix Completion with Non-uniform Missing Patterns, a New Measure of Conditional Dependence, and Applications to Feature Selection
具有非均匀缺失模式的矩阵补全、条件依赖性的新度量以及在特征选择中的应用
  • 批准号:
    2113242
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Comparison of Feature Selection Methods and Machine Learning Classifiers with Computed Tomography Radiomics-based Features for Predicting Chronic Obstructive Pulmonary Disease
特征选择方法和机器学习分类器与基于计算机断层扫描放射组学特征的预测慢性阻塞性肺疾病的比较
  • 批准号:
    466971
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship Programs
Modelling and Feature Selection with Applications to Big Data Problems
建模和特征选择及其在大数据问题中的应用
  • 批准号:
    RGPIN-2019-05963
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Fast flexible feature selection for high dimensional challenging data
针对高维挑战性数据快速灵活的特征选择
  • 批准号:
    DP210100521
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Projects
High-dimension, low-sample-size asymptotic theory for nonlinear feature selection
用于非线性特征选择的高维、低样本量渐近理论
  • 批准号:
    20K22305
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了