Robust Speaker Verification in Real Application Scenarios
真实应用场景中稳健的扬声器验证
基本信息
- 批准号:RGPIN-2019-05381
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spoken language is the most natural way we human communicate with each other. There is rich information conveyed in speech signal including language information, speaker information, environmental information and so on. Speaker verification refers to the problem of verifying the identity of a person from his/her voice using the characteristic vocal information. The necessity to legitimate an individuals' identity arises in several situations, including access control and authorization of financial transactions.
Recent developments in speech-based technologies have led to speech being touted as becoming the primary means of communication between humans and technology in the future. As the use of speech becomes more ubiquitous, there is a need for improvement and innovation in voice-based verification technologies, specifically speaker verification, so that these methods work reliably in real world scenarios.
To incorporate voice biometrics into real-world applications, it is important to ensure that verification performance can still be maintained even if the speakers are speaking in an adverse environment that the system has not confronted during training. Adverseness can be caused by background noise, reverberation, channel mismatch, language mismatch, and accent. Apart from domain robustness, a major concern with deploying speaker verification in real-world applications is the system's robustness against fraudulent attacks. This is due to the vulnerability of speaker verification systems to spoofing attacks.
This proposal focuses on building speaker verification systems which are domain-invariant and are robust to spoofing attacks. To tackle the domain mismatch problem, our goal is to learn domain-invariant speaker embeddings using domain adversarial training for robust speaker verification. We propose the use of deep learning architectures trained to both classify speakers and the domain. The key insight to this approach is that while network gets better at classifying speakers but gets worse at domain classification. As a result, the network leads to domain-invariant speaker representations. We also propose employing some novel unsupervised domain adaptation approaches to bridge the source and target domains. For improving performance further, we also consider combining these approaches with data augmentation and unsupervised PLDA adaptation methods.
Finally, to make ASV technology robust against fraudulent attacks, we propose a method for blind automatic detection of spoofing attacks which does not require any prior knowledge about the type of spoofing attacks. Here, convolution neural network based deep countermeasures are proposed for anti-spoofing.
Novelty of the proposed research includes to take the benefit of deep learning for domain-invariant representation learning, domain adaptation and deep spoofing countermeasures. The expected results will have a certain impact on speaker recognition research and commercial communities.
口语是我们人类相互交流的最自然的方式。语音信号中蕴含着丰富的信息,包括语言信息、说话人信息、环境信息等。说话人验证是指利用说话人的声音特征信息,从说话人的声音中验证其身份的问题。在一些情况下,需要使个人身份合法化,包括访问控制和金融交易授权。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alam, MdJahangir其他文献
Alam, MdJahangir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alam, MdJahangir', 18)}}的其他基金
Robust Speaker Verification in Real Application Scenarios
真实应用场景中稳健的扬声器验证
- 批准号:
RGPIN-2019-05381 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Robust Speaker Verification in Real Application Scenarios
真实应用场景中稳健的扬声器验证
- 批准号:
RGPIN-2019-05381 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Robust Speaker Verification in Real Application Scenarios
真实应用场景中稳健的扬声器验证
- 批准号:
DGECR-2019-00015 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Launch Supplement
Robust Speaker Verification in Real Application Scenarios
真实应用场景中稳健的扬声器验证
- 批准号:
RGPIN-2019-05381 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
A Study on Utterance Style-dependent Speaker Verification
依赖于话语风格的说话人验证研究
- 批准号:
23K11165 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Robust Speaker Verification in Real Application Scenarios
真实应用场景中稳健的扬声器验证
- 批准号:
RGPIN-2019-05381 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Robust Speaker Verification in Real Application Scenarios
真实应用场景中稳健的扬声器验证
- 批准号:
RGPIN-2019-05381 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Development of a Speaker Verification Method Based on Phase Corrected by Vocal Source Information - Toward Forensic Science Application
基于声源信息相位校正的说话人验证方法的发展-面向法医科学应用
- 批准号:
20K23357 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Robust Speaker Verification in Real Application Scenarios
真实应用场景中稳健的扬声器验证
- 批准号:
DGECR-2019-00015 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Launch Supplement
Robust Speaker Verification in Real Application Scenarios
真实应用场景中稳健的扬声器验证
- 批准号:
RGPIN-2019-05381 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Privacy preserved acoustic-falsification detection and speaker verification
保护隐私的声学伪造检测和说话人验证
- 批准号:
18K18052 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Corpus development considering pop-noise balance for robust speaker verification systems
语料库开发考虑了强大的说话人验证系统的流行噪声平衡
- 批准号:
16K16088 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A study on speaker-specific information extraction in consideration of vocalization mechanism and its application to speaker verification
考虑发声机制的说话人特定信息提取及其在说话人验证中的应用研究
- 批准号:
16K12465 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
JFA for text-dependent speaker verification
JFA 用于文本相关的说话人验证
- 批准号:
462115-2013 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants














{{item.name}}会员




