Linking Attosecond Science in Gases and Solids
连接气体和固体中的阿秒科学
基本信息
- 批准号:RGPIN-2019-04603
- 负责人:
- 金额:$ 4.44万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 1988 Dr. Anne l'Huillier observed the first high-harmonic radiation from an ionizing gas an observation that marked the beginning of extreme nonlinear optics. During the following 5-years, I introduced the major features of this new science, including how to produce and measure the world's shortest pulses, and I described how high harmonic generation could be used to probe the quantum system from which the electron came. In 2011, Dr. S. Ghimire observed the first high-harmonic radiation from transparent solids. This observation marked the beginning of a new phase of extreme nonlinear optics. My group, in collaboration with the Brabec group, introduce the first theory of extreme nonlinear optics in solids and confirmed it experimentally, opening a flood of research.
To the surprise of solid-state physicists and photonics scientists, the link between solids and gases is close. It is this link that gives this discovery proposal its name.
One of the unique aspects of strong electric-field-driven nonlinearities in gases is self-probing. To capture the technologically of self-probing in solids, we applied for (and received) patents. This proposal concentrates on self-probing (or imaging) and we emphasise four aspects of imaging including:
Sensing (specifically sensing electric fields in functioning electronic circuits) and thereby filming the operation of complex circuits. With high harmonic wavelengths reaching 10s of nanometers and a technology that could be extended to attosecond framing speeds, we have the time resolution and spatial resolution for modern electronics.
Imaging biological material (an extreme form of multiphoton microscopy). Cellular material is heterogeneous and that heterogeneity will be encoded in the harmonic spectrum. Thus, we have the potential to image biological material with a spatial resolution of organelles and with each pixel containing detailed structural information on the material in which it is generated. (Imaging the 3-D structure of a cell or the dynamics of a functioning electronic circuit has very important technological potential.)
Determining lattice or electronic-structure of materials and thereby time resolving phase changes. During high-harmonic generation an electron leaves its local environment and is pulled by the electric field of the fundamental beam through neighbouring sites. The high-harmonic emission spectrum reports on this trajectory, opening a window through which we can learn about electronic and lattice structure in solids.
PhD and pdf students who work on self-probing will learn about ultrafast optics, high vacuum systems, computer interfacing, while working with international collaborators. They will also gain experience lecturing at major conferences about an emerging area of solid state physics. As they graduate, they will strengthen and broaden Canadian atto-science in academia, and help move it towards industrial and medical applications.
1988年,Anne l'Huillier博士首次观测到来自电离气体的高次谐波辐射,这一观测标志着极端非线性光学的开始。 在接下来的5年里,我介绍了这门新科学的主要特点,包括如何产生和测量世界上最短的脉冲,我描述了如何使用高次谐波产生来探测电子来自的量子系统。 2011年,S. Ghimire观察到第一个来自透明固体的高次谐波辐射。 这一发现标志着极端非线性光学新阶段的开始。 我的小组与Brabec小组合作,介绍了固体中极端非线性光学的第一个理论,并通过实验证实了这一点,开启了大量的研究。
令固态物理学家和光子学科学家惊讶的是,固体和气体之间的联系非常紧密。 正是这个链接给了这个发现提案它的名字。
气体中强电场驱动的非线性的一个独特方面是自探测。 为了在固体中捕获自探测技术,我们申请了(并获得了)专利。 该提案集中于自我探测(或成像),我们强调成像的四个方面,包括:
感测(特别是感测功能电子电路中的电场),从而拍摄复杂电路的操作。 随着高谐波波长达到10纳米,以及可以扩展到阿秒帧速度的技术,我们拥有现代电子产品的时间分辨率和空间分辨率。
生物材料成像(多光子显微镜的极端形式)。 细胞物质是异质的,这种异质性将被编码在谐波谱中。 因此,我们有可能以细胞器的空间分辨率对生物材料进行成像,并且每个像素都包含有关其生成材料的详细结构信息。(对细胞的三维结构或功能电子电路的动态进行成像具有非常重要的技术潜力。
确定材料的晶格或电子结构,从而对相变进行时间分辨。 在高次谐波产生期间,电子离开其局部环境,并被基波束的电场拉过邻近的位置。高次谐波发射光谱报告了这一轨迹,打开了一个窗口,通过它我们可以了解固体中的电子和晶格结构。
从事自探测的博士和pdf学生将学习超快光学,高真空系统,计算机接口,同时与国际合作者合作。 他们还将获得在大型会议上讲授固态物理新兴领域的经验。 当他们毕业时,他们将加强和扩大加拿大在学术界的阿托科学,并帮助将其推向工业和医疗应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Corkum, Paul其他文献
Corkum, Paul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Corkum, Paul', 18)}}的其他基金
Linking Attosecond Science in Gases and Solids
连接气体和固体中的阿秒科学
- 批准号:
RGPIN-2019-04603 - 财政年份:2022
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
National Research Council Canada Research Chair In Attosecond Photonics
加拿大国家研究委员会阿秒光子学研究主席
- 批准号:
CRC-2014-00102 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Linking Attosecond Science in Gases and Solids
连接气体和固体中的阿秒科学
- 批准号:
RGPIN-2019-04603 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Laser ablation and ionization for nano-mass cytometry
用于纳米质量细胞计数的激光烧蚀和电离
- 批准号:
539026-2019 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Collaborative Research and Development Grants
Laser ablation and ionization for nano-mass cytometry
用于纳米质量细胞计数的激光烧蚀和电离
- 批准号:
539026-2019 - 财政年份:2020
- 资助金额:
$ 4.44万 - 项目类别:
Collaborative Research and Development Grants
National Research Council Canada Research Chair in Attosecond Photonics
加拿大国家研究委员会阿秒光子学研究主席
- 批准号:
CRC-2014-00102 - 财政年份:2020
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Laser ablation and ionization for nano-mass cytometry
用于纳米质量细胞计数的激光烧蚀和电离
- 批准号:
539026-2019 - 财政年份:2019
- 资助金额:
$ 4.44万 - 项目类别:
Collaborative Research and Development Grants
National Research Council Canada Research Chair in Attosecond Photonics
加拿大国家研究委员会阿秒光子学研究主席
- 批准号:
CRC-2014-00102 - 财政年份:2019
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Linking Attosecond Science in Gases and Solids
连接气体和固体中的阿秒科学
- 批准号:
RGPIN-2019-04603 - 财政年份:2019
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
All-Optical Attosecond Technology
全光阿秒技术
- 批准号:
RGPIN-2014-04930 - 财政年份:2018
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Linking Attosecond Science in Gases and Solids
连接气体和固体中的阿秒科学
- 批准号:
RGPIN-2019-04603 - 财政年份:2022
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Optical waveform measurement for attosecond science and trace chemical detection
用于阿秒科学和痕量化学检测的光学波形测量
- 批准号:
RGPIN-2019-06877 - 财政年份:2022
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Linking Attosecond Science in Gases and Solids
连接气体和固体中的阿秒科学
- 批准号:
RGPIN-2019-04603 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Optical waveform measurement for attosecond science and trace chemical detection
用于阿秒科学和痕量化学检测的光学波形测量
- 批准号:
RGPIN-2019-06877 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Optical waveform measurement for attosecond science and trace chemical detection
用于阿秒科学和痕量化学检测的光学波形测量
- 批准号:
RGPIN-2019-06877 - 财政年份:2020
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Multi-kilohertz laser for attosecond and ultrafast science
用于阿秒和超快科学的多千赫兹激光器
- 批准号:
LE200100151 - 财政年份:2020
- 资助金额:
$ 4.44万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Ab initio strong-field physics and attosecond science for molecules
从头算强场物理和分子阿秒科学
- 批准号:
19H00869 - 财政年份:2019
- 资助金额:
$ 4.44万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Linking Attosecond Science in Gases and Solids
连接气体和固体中的阿秒科学
- 批准号:
RGPIN-2019-04603 - 财政年份:2019
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Attosecond Science in the sub-keV region
亚keV区域的阿秒科学
- 批准号:
19H05628 - 财政年份:2019
- 资助金额:
$ 4.44万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Optical waveform measurement for attosecond science and trace chemical detection
用于阿秒科学和痕量化学检测的光学波形测量
- 批准号:
RGPIN-2019-06877 - 财政年份:2019
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual